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Abstract

A group is a mathematical object of great importance, bututheal study of group theory is
highly abstract and therefore difficult for many studentsriderstand. A very important class of
groups are so-called permutation groups which are verebloglated to Rubik’s cube. Thus,
in addition to being a fiendishly difficult puzzle, Rubik'steeiprovides many concrete examples
of groups and of applications of group theory.

In this document, we’'ll alternate between a study of growoth and of Rubik’s cube, using
group theory to find tools to solve the cube and using the auikistrate many of the important
topics in group theory.



1 Introduction

Note: If you have a new physical cube, do not jumble it up rightaway. There are some
exercises at the beginning of Section 2 that are much easieitiva solved cube. If you have
jumbled it already, it's not a big deal—Appendix A explains how to unjumble it but the
first few times you try, you'll probably make a mistake.

To read this paper you will certainly need to havefhebik computer program and it would
be very good also to have a physical Rubik’s cube. Radik program, complete documenta-
tion for it, and a few sample control files may be obtained &eeharge for either Windows or
Mac OS X (version 10.2.0 or later) at:

www. geornret er. or g/ r ubi k.

If you have not done so, acquire a copy of the program and @opy of the documentation
(there’s not too much—only about 15 pages). If you don’'t hBubik, but do have a cube,
you'll need a lot of patience and probably a screwdriver ke e cube apart for reassembly in
a “solved” configuration if you don’t know how to solve it adray.

First, some quick notation. The word “cube” will usuallyeefo the entire cube that appears
to be divided into 27 smaller cubes. We shall call these smallibes “cubies”, of which 26
are visible. There are three types of cubies: some show ardyface (called “face cubies” or
“center cubies”, some show two faces, called “edge cubigsigies”?) and some show three:
the “corner cubies” (“cornies”?). The entire cube has stefa each of which is divided into 9
smaller faces of the individual cubies. When it is importandistinguish between the faces of
the large cube and the little faces on the cubies, we'll tallittle faces “facelets”.

A permutation is a rearrangement of things. If you consider‘things” to be the facelets on
Rubik’s cube, it is clear that every twist of a face is a reagement of those facelets. Obviously,
in Rubik’s cube there are constraints on what rearrangesseatpossible, but that is part of what
makes it so interesting. The three facelets that appear antigydar corner cubie, for example,
will remain next to each other in every possible rearrangegme

A good understanding of permutations and how they behavéeljp you to learn to effec-
tively manipulate and solve Rubik’s cube. The cube, howdvas 54 visible facelets, so each
cube movement effectively rearranges many of the 54 itenh& best way to learn about any
mathematical subject is to begin by looking at smaller, $émpases. Thus in the first part of
this document we’ll look at permutations of small numbergefs, where we can list all the
possibilities and easily keep everything in mind.

When we talk about general properties of permutations infdlewing text, try to think
about what these statements mean in the context of a fewetenexamples. Rubik’s cube is
one such concrete example, and we'll introduce a few othevwsegproceed.

2 TheRubik Program and the Physical Cube

If your physical cube is solved (as it came when you boughtithtinue with the following
exercises. If itis jumbled, get it unjumbled first by follavg the directions in Appendix A and



then return here. And if you make a mistake while readinggsbigion and accidentally jumble
your cube so that you can't solve it, you'll probably need tothle same thing. In fact, even
if you've got a solved cube now, it is almost certain that yooiake a mistake sometime as
you read, so it's a good idea to try out the method in the appegodnake sure you know how

it works. Take your solved cube and make one or two twists thake sure you can use the
Rubik program to find that one- or two-move solution.

Beginning now and for the rest of the paper, we will use theesaotation to describe the
cubies and the twists that is used by fRebik program. For complete details, see fRebik
documentation in the section entitled, “Cube CoordinatesMove Descriptions”.

Basically, what you'll need to know now is that the lettdis L, F, R, B andD correspond to
quarter-turn clockwise twists about the up, left, fronghti back and down faces, respectively.
“Clockwise” refers to the direction to turn the face if yowedooking directly at the face. Thus
if you hold the cube looking at the front face, the md@appears to turn the back face counter-
clockwise. The lower-case versions of those letters, et cetera, refer to quarter-turn counter-
clockwise moves about the respective faces.

Hint: if you are beginning, it might be a good idea to put temporticksrs on the six center
facelets of your physical cube labeled “U”, “L”, et ceteradathen just make certain that your
cube has the same up and right faces as the virtual cube ootiyguter screen if you wish to
use the two in conjunction (like when you're usiRgibik to unjumble your physical cube). At
the very least, decide for yourself on a “standard” origatgtlike “white face up, green face
left” (which happens to b&ubik’s default orientation). With these temporary labels incpla
you can'’t use the whole-cube moves or the slice moves sirgernttay change which cubie is
“up” or “left”.

2.1 Inverse Operations

Let’s begin with a couple of obvious observations. If youlgttze front face and give it a quarter-
turn clockwise (in other words, you apply Bmove), you can undo that by turning the same face
a quarter-turn counter-clockwise (by doind move). If you do a more complicated operation,
like F followed byR, you can undo that with efollowed by af. Notice that you need to reverse
the order of the moves you undo in addition to the directiotinefturns—if you try to undo your
FR sequence with afr you will not return to a solved cubdry it—carefully do the sequence
FRfr and note that the cube is not solved.

If you have just applied the above sequeri€gfr, to return to solved, you'll need to do a
RFrf. Do you see why? Do so now to return your cube to “solved”.

In mathematics, an operation that “undoes” a particularatmm is called the inverse of
that particular operation, and the inverse is often indidatith a little “—1" as an exponent. If
we wanted to use this convention with our cube notation, wedcarite “F~1” in place of “f”,
“U~!" instead of ‘u” and so on. Since the standard computer keyboard does oat wtiu to
type exponents, the lower-case versus upper-case notsition only easier to type, but is more
convenient. Keep in mind, however, that if you read almogt mathematical text that works
with operations and their inverses, the use-efl” as an exponenet is the usual way to express
an inverse.



This double-reversal idea (thRiFrf is the inverse ofFRfr is very general. I, b, ¢, ... are
anyoperations that have inverses!, b=!, ¢~! and so on, then:

(abc---xyz) ' =2z"ly et e e

Because of this general principle, it is thus trivial to wrdlown the inverse of a sequence
of cube moves: just reverse the list and then change the ¢aselo letter from upper to lower
or vice-versa. For example, the inverse of the sequéfRe®IU is uLdUrFF. This will always
work.

Notice also that in the case of Rubik’'s cube moves anothertovayrite the inverse oF is
asFFF. In other words, if you twist the front face three more timtbst's the same as undoing
the original twist. We'll look more at this idea in the follimg section.

In the paragraph above, we consider a situation where wg gppkame operatioiir] three
times in a row. This is a very common thing to do, and some djp@mwill be applied many
more than three times in a row. For this reason, we use an exgiahnotation to indicate that an
operation is repeated. Thus fdeEF” we will write “ F 3” where the “3” in the exponent indicates
that the operation is repeated three times. The exponertiation can be used to apply to a
group of operations. For example, if we want to do the follagwperationFRFRFRFRFR (in
other words, apply the combin€&dR operation five times), we can indicate it as followBR)5.

To make sure you understand this notation, is it clear Bia& F? That's because the op-
erationF applied four times in a row returns the cube to the state befou started. Although
it may not seem important now, ig very important to have a name for the operation of “doing
nothing”. We call this the identity operation and will labehere as 1”. See Section 3.1. (You
can think of the 1” in terms of multiplication: multiplication by 1 in our usbaumber system
effectively does nothing.

3 Commutativity and Non-Commutativity

Again it should be obvious, but the order in which you applista/to the faces makes a differ-
ence. Take your physical cube and apply=ghto it and applyRF to the virtual cube irRubik.

It's obvious that the results are different. Thus, in gehEBRa# RF. This isnot like what you
are used to in ordinary arithmetic where if you multiply twambers together, the order doesn't
matter—7 x 9 = 9 x 7 and there’s nothing special abauand9.

When the order does not matter, as in multiplication of nursbee call the operation “com-
mutative”. If it does matter, as in the application of twikisa cube, or for division of numbers
(7/3 # 3/7) then we say that the operation is non-commutative. Ity éasemember the
name; you know what a commuter is: someone who commutes, wesndf an operation is
commutative, the objects can commute across the operatitha order doesn’t matter.

Just because a system is non-commutative, that does not timeiathe result is always
different when you reverse the order. In your cube, for eXapfB = BF, UD = DU and
LR = RL, FF?2 = F?F, and so on. (And in arithmetic, division is sometimes conatiué:

1/(=1)=(-1)/1.)



If twisting the cube faces were a commutative operationp thaving the cube would be
trivial. You would just need to make sure that the total nundfd- turns,U turns, and so on,
are multiples of 4 and you would be done. To see this on a smalk ssuppose your cube only
allowed you to turn the front and back faces but turns abaeiteft, right, up and down faces
were not allowed. Try this with your physical cube, and ybsdle that it's not a very interesting
puzzle.

3.1 Order

Since we are looking &ll operations that can be performed on a cube, it is importaivte
not forget perhaps the most important one: the operatiomisigchothing—of leaving the cube
exactly as it was before. This is called the “identity” oggmaand we’ll call it1 here if we need
to refer to it. The reason thatis a reasonable notation is that if we use the notaiBB to
meanF followed by R followed by B, it sort of looks like we're “multiplying” together those
three operations. We're also used to the idea that multiglghything byl leaves it unchanged,
and it's certainly true thatF = F1 = F—doing nothing and then doinfg is the same as just
doingF.

Let’s begin by looking at another obvious thing. If you staith a solved cube and perform
theR operation on it four times, the resulting cube returns tolaesbstate. Since our notation
for combining moves makes us think of multiplication (andagsshall see, this is a good way
to think of it), we could indicate multiples of the same opienaas exponent¥F = F?, FFF
= F3, et cetera. Now, since we noticed that applyingftbperation four times was the same as
doing nothing, we can also wrife=1.

As we do in most other areas of mathematics, it is reasonabliefineF® = 1, since applying
an operation zero times is the same as not applying it at hlgwis our definition ofl. Similarly,
F! = F since an exponent dfcorresponds to applying the operation once.

Obviously, there is nothing special abdufor this exponential notation—it applies to any
other move, or, in fact, to any combination of moves. For exanif we thing of the combination
FR as a single operation, then if we want notation that cornedpto repeating that operatién
times, we can writ¢FR)°. This means exactly the same thingFil®-RFRFRFR.

In this case it is also obvious that if we look at successiwege ofF: F*, F2, F3, and so on,
thenF* is the first time that we return to the identity. For this regsmee say that the “order” of
the operatiork is 4; four moves do the job and no smaller number of moves retuto udhere
we started.

What appears at first to be somewhat amazing isghgtube operation has such an order.
In other words, if you begin with a solved cube and repeat gryation enough times, the cube
will eventually return to “solved”.

As an exercise, try to find the order BFRR using a physical cube. Start with a solved cube
and apply those four moves. You will find that the cube is albitlpled. Repeat the same four
moves, and again, and again. Eventually (assuming you duaaike a mistake), the cube will
be solved again. The total number of times you had to repedbtir-move combination is the
order of that operation. Do try this. You will not have to rapthe operation too many times.



You can check your answer wifRubik. Reset the cube to solved and typd-RR” into the
window labeled “Current Macro”. Then press fMacro Ordefbutton just above the window in
which you just typed, anBubik will pop up an information window showing you the order that
it calculated. Or, if you don't trust thi@¢acro Ordefbutton’s result, you can apply tHeFRR
operation repeatedly until the cube is solved.

With the cube irRubik solved and theFFRR” still visible in the “Current Macro” window,
click on the|/Apply Macro| button. This will instantly apply your four moves and showwuythe
result. If you wish, apply the same~RR operation to your physical cube and compare the
results. Click the sam@pply Macrd button again and again until the cube returns to solved.
It should be the same number of times as the order you catcltatice before. In fact, what
Rubik is doing is just that—it starts with a solved cube, appliesiiove combination in the
window time after time, and after each application, it clettksee if the cube is solved. When
the cube has returned to the solved configuration, the osdmiply the number of times that it
took.

By the way, just so you don’t get mixed up, it might be a gooditte return your cube to
solved now withrrff.

It's not too much fun just to use th&pply Macrg button inRubik—the cube just jumps
to the result and you can’t see how it got there. Reset the agh, and make sure that the

sameFFRR is in the “Current Macro” window, click in that “Current Maetwindow with the
mouse just before the firsE” and press theeturn key repeatedly on your keyboar&ubik
then twists the cube faces as you watch.

Note: if the cube faces turn too quickly or too slowly, see Bigbik documentation to learn
how to set the turning speed to a reasonable value for youpuatan

Thereturn key is the scenic route and tppply Macrd button is the superhighway.

Why is it the case thany cube operation, if repeated enough times, will eventuaityinn
to where it started?

Each time an operation is repeated, the facelets are rg@dasince there are only a finite
(althoughverylarge) number of possible rearrangements, we know thatibpeat the operation
at least that number of times, we are guaranteed eventwatpeat one of the arrangements.
This does not prove yet that the cube will return to the ihit@nfiguration, but at least it will
repeat some arrangement.

Let’s call the operatior®, whereP stands for any combination of cube face twists. If we
applyP repeatedly, eventually it will arrive at a repeat arrangetonéthe cubie facelets. Suppose
that this first happens after times and that this arrangement is the same as one that edcurr
at and earlier step, wherek < m. ThusP* = P™, andm is the smallest such number. Thus,
unlessk = 0, P*=1 £ Pm—1_|f k = 0, we are done, sind’ = 1, so suppose that > 0.

SinceP* = P™, this means that if we appl eitherk times orm times to the same initial
cube, we arrive at the same final cube arrangement. If we dpplyto that arrangement, the
result will be the same, no matter whether it was arrivedtatraf or £ steps. (Since applying
the same operation to the same arrangement will yield the sasult.)

But applyingP—! at the end of each exactly undoes the final applicatidn thfat was done.



If you apply P m times and then undB once, that's the same as just applyingiit— 1 times

and similarly fork. ThusP*P~! = P*~1 andP™P~! = P™~1. ThereforeP*~! = pm—1,
contradicting the assumption that was the smallest value where the rearrangement repeats.
Thusk must be equal t6, SOP™ = 1.

This is very interesting for a couple of reasons. From a guaelistic viewpoint, if you
take a solved cube and repeatedly apply the same set of igmeat will eventually return to
solved again and again. Thlubik program has button that causes the cube to spin
through a random set of states but it keeps repeating th&rpaso if you watch long enough, it
is guaranteed to return to solved, not once, but over andamasrt.

If you have your own favorite set of moves that goes througtrech of pretty patterns, you
can forceRubik to use that as its demo pattern. Simply type it into the “QuirMacro” box
before you press th®emd button. For example, try typinBIUdRb as your macro and then
run the demo. If there’s anything in that bdXubik uses it for the demo pattern; if the box is
empty,Rubik invents its own pattern.

But the fact that any pattern eventually returns to solvadadly provides a brute-force
mechanism that you could use to solve the cube, althoughsgiution would be quite lengthy.

The usual method to solve a cube is to find combinations of syavkich, when applied as
a unit (which is what we’ll call a “macro”), do very specificitigs to the cube. For example, if
you found a move that would flip two edge cubies in place, ifdhle you were trying to solve
had two edge cubies in that orientation, you could apply taenmand bring your cube one step
closer to solution. In fact, whelRubik first comes up there is a set of such useful macros loaded
into the “Defined Macros” area. See the user’s guide to lesaistyy how to use these.

The question is, how do you discover these macros that dosragl, specific things and
leave most of the cube unaltered? It turns out (and we shalivbey later) that if you have a
macro with a certain order and you apply it for half or a thifdh@at number of steps, the result
is often a usable (although usually very long) macro.

As an example, consider tlt-RR macro that we experimented with before. We found (in
three different ways, hopefully) that the order of this nwaisr6. The “large” divisors of 6 are
2 and 3, so you may find interesting macros by repeatingERR combination twice or three
times.

To do this, reset the cube and tyIpERR into the “Current Macro” window. If you press the
button twice there’s a sort of a nice pattern, but it movesdarmany facelets to
be useful for solving the cube. Press it a third time, howemed you'll see that the net result is
that two pairs of edge cubies are exchanged and everyttsageinains exactly as it was before.
ThusFFRRFFRRFFRR might be useful to you as you're solving a cube.

It's easy to look for such macros. Simply type in various @lgushort) sets of moves and
find the order of that operation. If that order is divisibledbogmall number like 2 or 3 or perhaps
5, try dividing the order by that number and applying the rabiat number of times. There
is a shortcut for doing this. Suppose you find a pattern thatats every 90 moves (the macro

1In fact, the code in the demo routine selects by trial andrermombination of moves such that the total number of
moves is tolerably small—less than 300—so if you run the demde, you are guaranteed that the positions will start
to repeat in fewer than 300 moves.



FFLLBR, for example, has order 90). If you want to see what this dogkd cube after 45
moves (for a total o5 x 6 = 270 moves, which would be fairly painful to use), you can simply
type the following into the “Current Macro” window:45(FFLLBR)". A number in front of a
group of moves in parentheses tasibik to repeat the stuff inside that many times. These
groupings can be nested, but this will not be too useful fatifig cube-solving macros.

To see why this strategy might produce useful patterns, Weesd to take a detour to learn
something about the structure of permutations.

4 Permutations

A permutation is a rearrangement of a set of objects. Keeprid that it is therearrangement
that’s the important part; usually not the objects themesgNn some sense, the permutation that
exchanges itemsand2 in the set{1, 2, 3} is the same as the permutation that exchangasd
Bin the set{ A, B, C}—the rearrangement is the same; it's just that the namesqfatticular
items are different in the two cases. In what follows, unigesare talking about Rubik’s cube,
we'll just consider the objects to be moved to be the numberat to V.

One way to think about permutations &f objects is to visualize a set of boxes numbered
to N, and a set of balls with the same numbgte N, where each box contains a single ball.
A permutation consists of taking the balls out of the boxes uitting them back, either in the
same or different boxes, so that at the end, each box agaiainsmexactly one ball.

A permutation can be described by a series of statementthikillowing:

The ball originally in boxl is moved to box4;.
The ball originally in box2 is moved to box4s.
The ball originally in box3 is moved to box4s.
...et cetera.

The Ay, As, A3, and so on represent numbers froro N.

If the situation before the rearrangement occurs has baibun: in box numberi for every
1, then if we simply list the contents of the boxes in order, \eeha complete description of the
permutation.

As a concrete example, if the objects are2, 3 and4, we might usel 342 to represent the
permutation that leaves the contents of idiked, moves the ball in boX to box3, from box3
to box4 and from box to box1.

The description above works because there is a natural ofdée objectsl, 2, 3 and4
but there is no such natural order to the cubies or faces inkRutube—does a yellow face
“naturally” come before a red face? Who knows?

This problem can be solved by listing a permutation as twosraivere the item in the top
row is represents each original box and the item directlgwét is the box to which the contents
of that original box were moved. Thus the example permutatiche four numbers above can



be described equally well by any of the following:
1234 2134 4321 3412 (1)
1342 ) ' \3142) " \2431) " (4213

or in any of20 other forms, as long as there’s always ander thel, a3 under the2, et cetera.

5 Permutation Cycle Notation

The notation introduced in the previous section certairdyks to describe any permutation, but
there is a much better way that we will call “cycle notatioif’we are looking at a particular
permutation, we can begin at any box and see where the cergktitat box are moved by the
permutation. If that first ball doesn’t remain fixed, it moves new box, so the ball in that new
box is moved to yet another box, and so on. Eventually, a laallitb move back to the original
box since there are only a finite number of boxes. This formgéeavhere each ball moves to
the next position in the cycle and the moves eventually ‘Eyebund” to the original box.

These cycles can have any length from 1 upvtathe total number of boxes. In the previous
example shown in equation 1, item 1 forms a cycle of lengthricésit doesn’t move, or if you
like, it moves to itself). The other three form a cycle: 2 mete 3, 3 moves to 4 and 4 moves
back to 2. The cycle notation for that permutation is this:

(1)(234).

To interpret cycle notation, the set of items between eaahgbparentheses form a cycle,
with each moving to the box of the one that follows it. Finalhe last one in the list moves back
to the box represented by the first one in the list. These syeilk be disjoint in the sense that
each item will appear in only one of them. If an item appearetivio different cycles, then it
would appear to follow two different paths.

Notice also that the cycle notation is not unique althougteait be made to be. All the
permutations in the list below are equivalent:

)234) (1)342) (HEA23) (234)(1) (B42)(1) (423)(1)

Since they are independent, we can list the cycles in any,cadd since we can begin with
any element in the cycle and follow it around, a cyclewafbjects can appear in any offorms.

5.1 Canonical Cycle Notation

This makes it a bit difficult to determine at a glance whetlar tlescriptions of a permutation
in cycle notation are equivalent, but if there is some sothafural” ordering to the objects then
it is possible to form a canonical cycle notation:

1. Find the smallest item in the list and begin a cycle with it.



2. Complete this first cycle by following the movement of thgexts by the permutation and
close the cycle.

3. If you have finished listing all of the objects in the peratidn, you are done; otherwise,
return to step 1.

The canonical form of the cycle above(i)(2 3 4).

Let’'s now look at a few more complex permutations and see gt cycle notations look
like.

The permutatiorfl 3)(2 4)(5) exchanges the contents of boXeand3 and also exchanges
the contents of boxesand4 and leaves the contents of bexinchanged.

The permutatiorfl 2 3 4 5)(9 8 7) cyclesl to 2, 2t0 3, 3to 4, 4 to 5 and5 back tol. In
addition, it cycle9 to 8, 8 to 7 and7 back to9.

Often, if the set of objects being permuted is obvious, theaib that do not move are not
listed. Thus(1)(2 3 4) might be listed simply a&2 3 4). With this convention, however, there’s
no reasonable way to list the identity permutation that ,sawathing, so it is often listed d$),
where only one example of a non-moving object is listed, @neas] to indicate that it is an
identity transformation.

If you were listing the primitive cube operations in this &yootation, the convention of
leaving out 1-cycles would be a big advantage. Ofiliéacelets on a cube, a single face twist
only moves21 of them, which obviates listing3 of the 1-cycles.

5.2 The Cycle Structure of a Permutation

A very important feature of a permutation is captured whéslisted in cycle notation, and that
is its cycle structure. For example, the cycle structure of

(1)(2)(345)(6 78)(9 10 11 12)

has two 1-cycles, two 3-cycles, and one 4-cycle. To see wikyglimportant, let's begin with a
few simple examples.

Consider(1 2 3). If this operation is applied three times, it is obvious ttre result is the
identity permutation. Each time it is applied, each elenagiveinces to the next box in the cycle,
but the cycle is three boxes long, so after three steps, dgebtavill return to where it started.
In fact, if P is a permutation whose structure consists of a singlgcle: (i1 iz i3 - - i,) then
P =1.

Also obvious, but worth stating, is that if you apply a peratitn that consists of a single
cycle of lengthn repeatedly, it will return to the identity afteveryn applications. IfP consists
of a single 5-cycle, the?® = P10 = p15 = p20 — ... =1,

Next, let's consider the permutatidh= (1 2 3)(4 5 6 7) that consists of both a 3-cycle and
a 4-cycle. Since the two cycles have no elements in commuae &pplyP repeatedly and don’t
pay any attention to the elements in the 4-cycle, we see #megits in the 3-cycle returning to
their initial locations every three applications. Simliyaif we ignore the elements in the 3-cycle



and pay attention only to those in the 4-cycle, then everypliegtions of P returns those four
elements to their starting places.

In other words, the elements in the 3-cycle return to thegioal locations forP3, PS, P?,
P'2, P and so on. Similarly, the elements in the 4-cycle returmgdrtoriginal locations for
P4, P8, P2, P16 and so on.

Notice thatP'? appears in both lists, and that this is the first exponerit ¢ffiat is in both
lists. This means that afté2 applications ofP, the elements in both the 3-cycle and in the 4-
cycle are returned to their starting locations, and furtiae, this is the first time that it happens.
ThusP'? = 1, and since it’s the first time this happens, the ordePd$ 12.

The numbed?2 is the least common multiple 8fand4, usually written as
LCM(3,4) = 12.

In other words]2 is the smallest number larger thathat is a multiple of botl3 and4. 1t should
be obvious from the discussion above that if a permutatiarsists of two cycles of lengths
andn, then then order of that permutation is sSimplgM(m, n).

The concept of a least common multiple can be extended dasilyy number of inputs. We
have:LCM(4, 5,8,7) = 280—280 is the smallest number that is a multiplefpfs, 8 and7. If
a permutation consists of a 4-cycle, a 5-cycle, an 8-cycteaaii-cycle, then the order of that
permutation would beg0.

5.3 Applications of Cycle Structure to the Cube

Let’s consider a permutation that looks like thi3:= (1 2)(3 4 5 6 7) that consists of a 2-cycle
and a 5-cycle, so its orderisCM (2, 5) = 10. What happens if we repe&tfive times? In other
words, what does® look like? The 5-cycle will disappear, since after 5 applmas, every
element in it has cycled back to its starting point. The 2lkeydll have been applied an odd
number of times, so it will remain a 2-cycle. Thi = (1 2).

Thus, although the permutatidnby itself moves 7 objects, the permutatiBh moves only
two objects. If the objects, 2, ..., 7 in this example were really cubies in Rubik’s cube, then if
the operationP were repeated 5 times, the net result would be an operatdmtbved exactly
2 cubies and left all the others where they were.

Toward the end of Section 3.1 we saw an example of this: Theatipa FFRR moves 13
cubies, butEFRR)? moves only 4—it exchanges two pairs of edge cubies.

Using the names for the individual cubies described in theudwentation for thérRubik
program, here is what the permutatieRRR does:

(DF UF)(DR UR)(BR FR FL)(DBR UFR DFL)(ULF URB DRF)

where we use “DF” to indicate the “down-front” edge cubie BB’ to represent the “down-
back-right” cubie, et cetera. Obviously, since there areut8es in the permutation cycle listing,
13 of the cubies are moved B¥RR. But nine of those 13 appear in 3-cycles, so the permutation

10



(FFRR)? leaves those nine cubies fixed, moving only the two pairs géedibies that we noticed
earlier.

The Rubik program has a command “Display Permutation” in the “Fileflqolown menu
that will display the permutation that is required to getlte turrent cube coloring from the
solved cube. Although the notation above appears to desitréopermutation, there are a couple
of problems with it;

1. If a cubie is left in its same position but is rotated (a evraubie) or flipped (an edge
cubie), then there is no way to indicate this.

2. Even if the cubies move in a cycle to different positionslmncube, there is again no way
to indicate how they are flipped or rotated in their new posgirelative to how they were
before.

The easiest way to indicate the details of a permutationtigxiado list where every facelet
of every cubie moves. Assuming that the center cubies stalaae, there are 48 of these facelets
that can move so such a complete description is a lot longdiiaesn’t make it quite so obvious
which cubies move to which locations.

So in spite of its drawbacks, the first form of the notationssally the most useful. It can
be improved slightly so that it will indicate cubies that #ifgped or rotated in place as follows:
(UF) means that the up-front edge cubie stays in place, bilipged. (URF) means that the
up-right-front corner cubie is twisted in place where thdagelet moves to the right facelet, the
right to the front, and the front back to the up facelet.

When you issue the “Display Permutation” command you willpgpesented with both the
most useful and most accurate descriptions of the perrongatiThe notation for indicating the
movement of cubie facelets requires that each corner culasdigned the names for its three
facelets and each edge cubie needs two. The (URF) cornerleabithe following three facelets:
(Urf), (Ruf), and (Fur). The three letters indicate whichreer it is, and the letter in upper case is
the particular cubie facelet. Similarly, the two faceletshe cubie (UF) are (Uf) and (Fu). The
description of the movement that flips the UF and UL cubiedaceis this: (Lu Ul)(Fu Uf).

To save you the trouble of counting the number of terms in egcle, the cycle notation is
listed below each permutation. A permutation having thifaihg notation:

4(3) 2(5) 1(6) 1(8) 1(12)

means that the particular permutation consists of four@esy two 5-cycles, and one each of a
6-cycle, an 8-cycle and a 12-cycle.

In the first listingRubik may also list a certain number of 1-cycles, but these simgbya-
sent the number of cubies that say in place and are eitheeflipprotated. Look at the detailed
permutation description to see what they are. Cubies thgtisiplace and are not moved are not
listed as 1-cycles. Similarly, the 1-cycles in the facenpatiation listing are not included.

Here is an example where the permutation cycle form can lettodnd a macro that would
be truly useful for solving the cube, although it containsté® many steps. On the other hand,
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if you didn’t know any better techniques, this one would worke example also illustrates one
of the shortcomings of the cubie-based cycle notation.Algh you apply a 9-cycle nine times,
it does not return completely to solved, since those moveésiteave a net effect of flipping some
edge cubies. If you look at the cubie-facelet permutatiom wil see that one of the cycles in

fact has length 18.

Imagine that you've experimented with a number of short merauences and you stumble
across this oneFFUIIR. You find that the order of this permutation is 36, but when igmk at
the cycle notation, you obtain this:

(UR UF)(UL UB BR DR FR DF BL FL DL)
(RFU)(BRU)(DRF UBL DBR)(DLB ULF)(DFL)

Its cycle structure contains cycles of lengths 9, 3, and 2first it looks like applying it 9
times might be useful since that would only leave a pair of@es, but when you try this, you
obtain:

(UR UF)(UB)(UL)(DF)(DR)(DL)(FR)(FL)(BR)(BL)(DLB ULF)

In fact, the long cycles also flip cubies when they operatdastoo much is done by this
operation. However, we noticed that the order of the mac® 3@ not 18, and thus if we do 9
more applications, it will undo the flips and it must leave stining changed afterwards. When
we do this, the cycle structure is simply:

(UF)(UR)

which flips two cubies in place. The unfortunate thing is tb@&tapplications of a 5-step macro
or 90 total twists are required to do this.

6 Whatls a Group?

A group is an abstract mathematical object that can be deifinedms of a few simple axioms
and about which theorems can be proved. The set of permusatioRubik’s cube provide an
example of a group, but unfortunately, of a large and faidgnplex group.

We will be able to use some properties of group theory to madatp the cube, but, as
before, if we want to learn something about groups, it is adgdea to begin looking at simple
ones with only a few members; the groRpcorresponding to Rubik’s cube h&k 2121937 =
43252003274489856000 members, one corresponding to each position reachabledraoived
cube. It's probably easier to begin by looking at groups ®ittr 4 or 6 members.

6.1 Formal Definition

A group g consists of a set of objects and a binary operati@m those objects satisfying the
following four conditions:

12



1. The operation is closed. In other words, if andh are any two elements of the grogp
then the objecy = h is also ingG.

2. The operatior is associative. In other words, ff, ¢ andh are any three elements 6f
then(fxg)«h= fx*(gxh)

3. There is an identity elementin G. In other words, there exists anc G such that for
everyelemeny € G,exg=g*e=g.

4. Every element irG has an inverse relative to the operationin other words, for every
g € G, there exists an elemegt! € G suchthay x g=' =gt x g =c.

For those who desire the absolute minimum in conditionsttseéotnoté.

Notice that one of the properties that you are used to in mggems is not necessarily
present in a group: commutativity. In other words, there magt elementg andh of G such
thatg « h # h x g. Notice also that the definition about says nothing aboubambeing finite,
although in this paper we will consider mostly finite grougighough in the case of the, very
large finite groups.

Since there is only one operatienwe often omit it and writgyh in place ofg x h. Similarly,
we can defing? = gg = g* g, 9> = g99g = g* g+ gand soong® = ¢, andg™" = (g~ 1)".
Because of associativity, these are all well-defined.

6.2 Examples of Groups

You are already familiar with a few groups, but most of thetii@own groups are infinite: the

integers under addition, the rational numbers under addithe rational numbers except for 0
under multiplication, the real numbers or complex numbeidau addition, the real or complex
numbers except for 0 under multiplication. All of these grsware infinite and commutative.
(Commutative means thab = bxa for everya andb in the group.) A group thatis commutative
is called an abelian group.

The natural numbers=( {0, 1,2, 3,...}) under addition do not form a group—there is an
identity (0), but there are no inverses for any positive narab We can’t include zero in the
rational, real, or complex numbers under multiplicatiarcsiit has no inverse.

The so-called trivial group consists of one eleméngnd satisfied x 1 = 1 is the simplest
group. Since a group has to contain the identity elementri¥ial group is the smallest group
possible.

If you know about modular arithmetic, then if the operatisraddition modula:, the n
elementd), 1, ...,n — 1 form a group under that operation. This is a finite commugggiroup.
If p is prime, then multiplication modulp forms a group containing — 1 elementsi, 2, ...,
p — 1. If pis not a prime then the operation does not form a group. Fanpla if p = 6 there

2|n fact, there is a slightly simpler and equivalent defimitiof a group. Only a right identity and a right inverse are
required (or a left identity and a left inverse). In other d&rif there is are such thaty « e = g for all ¢ € G and for
everyg € G there exists g~ such thaty x g—! = e then you can show thatx g = g and thaty—! x g = e. This can
be done by evaluating the expressipn' * g x g~ = (g~ 1)~! in two different ways using the associative property.
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isnoinversefor: 2x1 =2,2%x2=4,2%x3 =0,2%x4 = 2and2 x5 = 4. (Remember
that the %” represents multiplication modul&) When two numbers, neither of which is zero,
multiply to yield zero, then the system is said to have zewsdrs. When a modular system
under multiplication has no zero divisors it forms a group.

In the group based on addition modulgif you begin with the element, you can get to
any element in the group by successive additions of thateinin the group of order 5, you
have:1=1,2=1+1,3=14+1+1,4=141+14+1and0=1+1+1+1+1. The
same idea holds for any. In this case we say that the group is generated by a singtecalg(l
in this case), and such groups are called cyclic groupse sinccessive additions simply cycle
through all the group elements. For this same group correlipg ton = 5, the elemens8 is
alsoagenerato: =3+3,2=3+3+3+3,3=3,4=3+3+3and5=3+3+3+3+3.
Does that group have any other generators?

For any particular geometric object, the symmetry openatiorm a group. A symmetry op-
eration is a movement after which the object looks the sameekample, there are 4 symmetry
operations on an ellipse whose width and height are difteren

1: Leave it unchanged

a: Rotate it180° about its center
b: Reflect it across its short axis
c: Reflect it across its long axis

The group operation consists of making the first movemertdavi@d by making the second

movement. Clearly is the identity, and each of the operations is its own invevge can write
down the group operationon any pair of elements in the following table:

0 o ¥
o R -
SN0 R Q9
L = 0o oo
—Q 0|0

The group of symmetries of an equilateral triangle consibtix elements. You can leave it
unchanged, rotate it bi20° or 240°, and you can reflect it across any of the lines through the
center and a vertex.

In the same way, the group of symmetries of a square condigiglat elements: the four
rotations (including a rotation di° which is the identity) and four reflections through lines
passing through the center and either perpendicular todgeseor the diagonals. In general, a
regularn-gon has a group dfn symmetries which is usually called the dihedral group.

A circle has an infinite number of symmetries. It can be ratatgout its center by any angle
0 such that) < § < 27 or it can be reflected across any line passing through itecent
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6.3 Permutation Groups

The mostimportant example (since we're supposed to be fxaté&kubik’s cube as we read this)

is that certain sets of permutations also form groups. SinmeErmutation is just a rearrangement
of objects, the group operation is simply the concatenatfdwo such rearrangements. In other
words, ifg is one rearrangement ahds another, then the rearrangement that results from taking
the set of objects and applyingto it, and then applying to the rearranged objects is what is
meant byg * h.

To avoid a possible misunderstanding, when we speak abelRtiik's cube group, the
group members are move sequences and the single operatimast of doing one sequence
followed by another. At first it's easy to get confused if yhink of rotating the front face as a
group operation. The term “move sequence” above is not xaght either—move sequences
that have the same final result are considered to be the saman Easy exampl&,andF® are
the same group element.

The Rubik’s cube group is simply the set of all possible pdations of the facelets achiev-
able with twists of the cube faces. To combine two of thesenpéaitions, we simply apply one
after the other. This, of course, is a huge group. Since tluigmis so prominent in this paper,
we’ll give it a special nameR.

In any permutation group the identity permutation that ¢ésagll the objects in place will,
of course, be the group identity. The inverse of a permutadahe permutation that exactly
undoes it. To multiply two permutations together, just péelch element from the set of objects
being permuted and trace it through. For example, if the Sebjects that are to be permuted
consists of the six object§l, 2, 3,4, 5,6} and we wish to multiply togethefl 2 4)(3 6) and
(51 2)(4 3) we can begin by seeing what happens to the object inlhaxder the influence of
the two operations. The first one moves it to 2oand the second moves the object in [2a0
box 5. Thus, the combination moves the object in Hoto box5. Therefore, we can begin to
write out the product as follows:

(124)(36)%(512)(43)=(15 ...

We write “...” at the end since we don’t know where the object in Baoes yet. Let's trace
5 through the two permutations. The first does not mbeed the second movédo 1, so(1 5)
is a complete cycle in the product.

Here’s what we have, so far:

(124)(36)%(512)(43) = (15)...

We still need to determine the fates of the other objects.agonfe haven't looked &, so
let’s begin with that. The first permutation takes idtand the second takdso 3 so we've got
this:

(124)(36) % (512)(43)=(15)(23 ...

Doing the same thing again and again, we find that the pairrofip&tions takes8 to 6, that
it takes6 to 4, and finally, it takest back to2. Thus the final product of the two permutations is
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given by:
(124)(36)*(512)(43)=(15)(2364).

From now on we’ll omit the %” operator and simply place the permutations to be multiplie
next to each other. As an exercise, verify the following pratcf permutations of th@ objects
{1,2,...,9}:

(123)(45)(6789) (256)(41)(37) = (15)(2789)(346).

As we noticed when we looked at permutations of the faceleBubik’'s cube, the order
makes a differencedi 2)(1 3) # (1 3)(12) since(12)(13) =(123)and(13)(12) =(132).

Let’s look in detail at a particular group—the group of alhpeitations of the three objects
{1,2,3}. We know that there are! ways to rearrange items since we can chose the final
position of the first im ways, leaving: — 1 ways to chose the final position of the secone; 2
for the third, and so on. The produet; (n — 1) - (n—2) ---3-2-1 = n!is thus the total number
of permutations. For three items that means ther8are6 permutations:

(1), (12), (13), (23), (123)and (132).

Table 1 is a “multiplication table” for these six elementsinc®, as we noted above, the
multiplication is not necessarily commutative, the talsléa be interpreted such that the first
permutation in a product is chosen from the row on the top hadé&cond from the column on
the left. At the intersection of the row and column deterrdibg these choices is the product of
the permutations. For example, to multigly2) by (1 3) choose the item in the second column
and third row:(1 2 3).

(1) (12 (13 (23 (123) (132)
M [ () (12 (13 (23 (123 (132
12) | 12) (1) (132 (123) (23) (13
13) | (13) (123 (1) (132 (12) (23
(23) | (23) (132 @23 1) (13 (12
(123) | (123) (13) (23) (12) (132) (1)
(132) | (132) (23)  (12) (13) (1) (123)

Table 1: Multiplication of permutations of 3 objects

If we make a similar table of the symmetries of an equilaterahgle AABC' (with A, B
and( listed counter-clockwise) as described above whose elenagal, rotate120° = R1,
rotate240° = R2, flip across axisA, B or C (F A, F B, F'C), then you would obtain table 2.

If you look carefully at tables 1 and 2, you can see that theyraally the same—the only
difference is the names of the permutations. If you sulistitifor (1), F'A for (1 2), F'B for
(13), FC for(23), R1for (12 3)andR2 for (1 3 2), the two tables are identical, so in a sense,
the two groups are identical and we call them isomorphic.
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1 FA FB FC Rl R2
1 1 FA FB FC Rl R2
FA | FA 1 R2 Rl FC FB
FB | FB Rl 1 R2 FA FC
FC | FC R2 RI1 1 FB FA
Rl | Rl FB FC FA R2 1
R2 | R2 FC FA FB 1 R1

Table 2: Multiplication of symmetries of an equilaterabtrgle

In fact, it is easy to see why this is the case. The symmetfidgsoBC just move the letters
labeling the vertices around to new locations and the sixsgtries of the triangle can arrange
them in any possible way, so in a sense, the triangle symesa®arrangel, B andC and the
permutation group rearranges the objggts and3.

This group that contains all the permutations of three dbjeccalled the symmetric group
on three objects. In general, the group consisting of alp#renutations om objects is called
the symmetric group on objects. Since there aré permutations of. objects, that is the size
of the symmetric group.

Thus when you read in your group theory text that there aretlyxwo groups of order 6,
what this means is that every group, with an appropriatéediiag of the members of the group,
will be like one of those two groups. When two groups have téiationship, we say that they
are isomorphic. (The groups in tables 1 and 2 are the sametlilee group of order six is the
one corresponding to addition modulo 6, described in Se&ia.)

A permutation group does not have to include all possiblenpgations of the objects. If we
consider theR as a permutation group, there is obviously no permutatiahrioves an edge
cubie to a corner cubie and vice-versa. The group consisfitige complete set of permutations
of three objects shown in table 1 contains various propesetsiihat also form groups:

{1}1,{1,(12)},{1,(13)},{1,(23)}, and {1,(123),(132)}. (2)

These subsets of groups that are themselves groups undsart operation are called
subgroups. The grouR is a subgroup of the group of all permutations of 48 items.

6.4 Properties of Groups

This paper is not meant to be a complete course in group theorye’ll list below a few of
the important definitions and some properties satisfied lgraups, the proofs of which can be
found in any elementary introduction to group theory or edzttalgebra.

1. The identity is unique and every elementiolias a unique inverse.

2. The order of an elemegt € G is the smallest positive integersuch thaty™ = e. In a
finite group every element has a finite order.
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3. The order of a group is the number of elements in ity & G then the order of divides
evenly the order of.

4. We say that{ is a subgroup of a group if H C G andH itself is a group under the same
binary operatiorx that's used irg. If H is a subgroup o then the order o divides
evenly into the order of.

5. If H andKC are both subgroups of the same grelyghen™ N K is also a subgroup .

Using as an example the symmetric group on three objecttagliesphin table 1, the order
of (1 2) is 2, the order of1 2 3) is 3, and both 2 and 3 divide 6, the order of the group. The
proper subgroups of the symmetric group listed in equatibav2 orders 1, 2, and 3—again, all
divisors of 6, as they should be.

Any pair of subgroups in that list only have the identity e@min common, so clearly the
intersection of any two of them is also a group, althoughftiéstrivial group.

If we look at the symmetric groug on 4 objects (the group of ordéf = 24 that contains all
the permutations of 4 objects), (&t be the subgroup df that consists of all permutations that
leave the elemernt fixed (but with no further restrictions), and I€tbe the set of permutations
that leave? fixed.

Then we have:
H o= {(1),23
K = {1),13
HNK = {(1),(34

—

),(24),(34),(234),(243)
),(14),(34),(134),(143)

)}

illustrating that the intersection of two subgroups is @assubgroup (and in this case, the inter-
section is the set of all permutations that leave Hoéimd?2 fixed).

—

For the symmetric permutation groups, it is easy to see wayther of an element has to
divide the order of the group. As we saw in Section 5.1, we cate\any particular permutation
down as a set of cycles, and the order of that permutatiomiplgithe least common multiple
of the cycle lengths. Since there arelements that are moved by the permutations, the longest
cycle can have length at maost so all the cycle lengths are thusor less. But the order of the
group isn!, so clearly the LCM of a set of numbers less thawill divide n!.

7 Simple Subgroups of the Rubik Group

In its total glory, a jumbled Rubik’s cube is difficult to umble, especially when you are a
beginner. A common method to learn about complex situati®is look first at simpler cases
and learn as much as you can about them before tackling tdetamoblem.

One way to simplify Rubik’s cube is to consider only a subdetmoves as being allow-
able and to learn to solve cubes that were jumbled with ordgehmoves. If you do this, you
are effectively reducing the number of allowable permotagj but you will still be studying a
subgroup of the full Rubik group.
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Let's consider a few subgroups. You may wish to investighésée yourself. Th&ubik
program contains a “macro gizmo” that may make this easfgrou would like to investigate
the positions achievable using a limited set of moves, defiwh of those moves as a macro and
put all of them in the macro gizmo. Then make moves from afaiiied cube using only macro
gizmo entries. In fact, if you place the macro gizmo on tophef tontrol panel oRubik, you
will not press any other buttons by accident. If you resyair moves to any of these subgroups,
the cube will be easier to solve.

The list below is a tiny subset of the total number of subséth@whole group, but these
are “practical” examples in that you can experiment witha oeibe making only the moves in
the indicated subgroups. In a later section, we will exarmimeore detail more general (but less
practical) subgroups a®

1. Single face subgroup. In this subgroup you are only allowed to move a single face.
This group is not very interesting, since there are only 4eeétile positions including
“solved”, but it is a proper subgroup of the whole group.

2. Two opposite faces subgroupThis is also a fairly trivial group since twists of two op-
posite faces are independent. Still, it has 16 elementssaaual @xample of what is known
as a direct product groupBeware: if you are allowed to turn two adjacent faces, the
subgroup is enormous: 73483200 members.

3. F-R half-turn subgroup. In this group, you are allowed to move either the front face or
the right face by half-turns. This subgroup is of order 12 aedhave already done a bit
of analysis of this situation in Section 3.1.

4. The slice subgroup. In this group, you can only move the center slices. The suljgro
can be further restricted by requiring that one, two, orehoéthose slices must make
half-turns only. The full slice group contains 768 membéfrene of the slices must be a
half-turn, there are 192 members. If two are half-turnsiglage 32 group members, and
if all three moves must be half-turns, there are only 8 member

8 How Many Cube Positions Can Be Reached?

Ideal Toy Company stated on the package of the original Rubbe that there
were more than three billion possible states the cube cdtdahalt’s analogous to
MacDonald’s proudly announcing that they've sold more tha@ hamburgers.

—J. A. Paulos|nnumeracy

In Section 6 we said that the total number of reachable postfrom a solved cube is the
following huge numbers8! - 12! - 210 . 37 = 43252003274489856000 = 227 - 314 . 53 . 72 . 11.
How was this calculated? That's what we’'ll investigate iis tection, but we’ll need to learn to
use some mathematical tools to do so. We can also investigithethese same tools, the orders
of some of the subgroups of the full cube groRp
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8.1 Even and Odd Permutations

In this section we will show that all permutations can bedidd into two groups—those with
even and odd parity. Just as is the case of addition of whatgeus, combining two permuta-
tions of even parity or two of odd parity results in a permigtabf even parity. If only one of

the two has odd parity, the result is odd.

Notice the following:

(12) = (12)
(12)(13) = (123)
(12)(13)(14) = (1234)
(12)(13)(14)(15) = (12345)
(12)(13)(14)(15)(16) = (123456)

and it is not hard to prove that the pattern continues. Thisvstthat anyn-cycle can be ex-
pressed as a product dfcycles. Ifn is even, there are an odd number2efycles and vice-
versa. Since every permutation can be expressed as a ssfoafititycles, this means that every
permutation can be expressed as a produgtofcles. For example:

(142)(3567)(98) = (14)(12)(35)(36)(37)(98).

Obviously, there are an infinite number of ways to expressrenpgtion as a product of
2-cycles:

(123)=(12)(13)=(12)(13)(12)(12) = (12)(13)(12)(12)(12)(12)---

but it turns out that for any given permutation, the number-ojcles necessary is either always
even or always odd. For this reason, we can say that a peioutateither even or odd, de-
pending on whether the representation of that permutadquoires an even or odd number of
2-cycles.

This is not too hard to prove. Suppose that we consider a pation of the se{1,2,...,n}
that moved to z1, 2 to x5, 3 to x5 and so on. All ther; are different, and are just the numbers
from 1 to n in some order. Consider the product:

[T @i—2)=@—z)(@s—21) (@0 —21)(@5 — 72) -+ (T0 — T01)  (3)

1<j<i<n

If you have never seen thid-product notation before, the Greek symhbl(pi) in front
indicates a collection of things to be multiplied. In the exde above, it means to multiply
together all possible terms of the fom; — x;) wherel <i < j < n. It heightis similar to the
¥} notation for summation, if you have seen that before. If yad ft easier to understand, the
product notation above has the following alternate repragion where both and; step up one

at a time: - .
I @-=)= 11 ( H (zi —fvj))

1<j<i<n



Since all ther; are different, every term in the product is non-zero, so tioelpct itself is
also non-zero, but it may be positive or negative. If the paids negative, we will call the
permutation odd and if the product is even, we'll call it even

First, let's check to see that the definition seems to maksesext least in a few simple cases.

The permutation that swapisand2, (1 2) hasz; = 2 andzs = 1, so the product has only a
single term:(xy — z1) = (1 — 2) = —1 which is negative, so a permutation with one cycle (one
is odd) corresponds to a negative product.

Now consider(1 3 2). This should be an even permutation sirite3 2) = (1 3)(1 2) and
thus the corresponding product should be positive. We have 3, zo = 1 andx3 = 2, and the
calculation below shows that indeed the product is positive

(SCQ - xl)(Ig - Il)(xg - IQ) = (1 - 3)(2 - 3)(2 - 1) = (—2)(—1)(1) = +2 > 0.

You can check a couple more if you like, but you'll discoveattit always seems to work,
but why?

The identity permutation should be even (it can be represeby zero2-cycles, and 0 is
even). For the identityy; = ¢ for all 4, so ifi > j, z; —x; =i — j > 0, so all the terms in the
product are positive, making the product positive.

Now, if we multiply any permutation by a-cycle, this should change it from even to odd
or vice-versa, so we'd like to see that multiplying og-aycle will flip the sign of the product.
The following technique will work for ang-cycle, but let’s just look at multiplication of some
permutation by the-cycle(1 2).

This 2-cycle exchanges and2, so in the product, every, becomes ar, and vice-versa.
Let’s write the product in the following form:

(zi—x;) = (T2 — z1) (T3 — 1) (T4 — T1) -+ - (TR — T1)
133'1:[@1 (z3 — w2) (T4 — 22) -+ (T — 22)
(x4 —x2) - (Tp — x3)

(xn - xn—l)

If we exchanger; andx., the sign of(zo — x1) will flip, but consider the rest of the line.
Each term in the remainder of the line will become exactlyshme as the term directly below it,
and the term directly below will become that term, so therdéhe no additional changes of sign
in the rest of the terms of the product. (In other words, whamgubstituters for z1 in (x3—x1)
it becomeqz3 — x2) but when you substitute; for x5 in the term below it(x3 — z2), you
obtain(xzs — 1) so both substitutions together leave the product unchapgtshce, only one
term changes sign, so the product will flip from positive tgaiive or vice-versa, completing
the proof.

Itis clear that if you look at all possible permutations oEaaf objects, exactly half of them
will have even parity and the other half, odd. In fact, an img@ot subgroup of the symmetric
group onn objects (the group of all possible permutations), the suhse consists of just the
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even permutations forms a subgroup called the alternatimgpgonn objects. (Obviously, the
subset of the odd permutations does not form a subgroup gireenissing the identity.) The
alternating groups oh or more objects are the first examples of so-called simpleggthat you
will encounter in any formal class on group theory.

8.2 Parity and the Cube

We know that every possible permutation of the cube can beaath by some combination of
single turns of one face, and it is also easy to see that emeeytéirn has even parity with respect
to the movements of the cubies. The cycle structure for desiclgckwise quarter-turn of the
front face is this:

(FL UP FR DF)(ULF UFR DRF DFL)

which clearly has even parity since each of theycles can be written as a product of three
2-cycles for six totaR-cycles making the parity even. This means that there is ntbazation

of moves of the cube that will exchange a single pair of cubezmuse that would correspond to
an odd permutation of the cubies.

A cycle of three cubies of the same kind is possible, or an&xgh of two pairs, both edges,
both corners, or one of each. If the goal of solving Rubik’sewere simply to get the corner
cubies and edge cubies into their correct positions butmetdrry about whether they were
oriented correctly, then if you were to break the cube apadt r@assemble it at random, on
average half of your reassemblies would result in a solvelnbe.

But usual solution does require that you get the orientatmfrthe edge and corner cubies
correct, and it turns out that there are additional restricton these orientations. Let's consider
first the orientations of the edge cubies where we will seeghaven number of them must be
flipped, so they, too, satisfy a parity condition.

Imagine a cube in outer space held in space such that the ceibies stay fixed as the other
cubies turn around them. If you imagine a set of three-dinoeascoordinate axes whose origin
is at the center of the cube and that such that each axis goegththe center of a pair of center
cubies, then for each axis, there are four edge cubies whiseedge is aligned with that axis.
Each axis has a positive and a negative direction, and letawk the outer edge of each cubie
with an arrow that is aligned with the positive direction bétaxis parallel to it in the solved
configuration.

At any stage, you can look at the arrows on each edge cubits edge to see if they are
aligned with their current axis. We will show that any sintylen of a face changes the orientation
of exactly two of them (an even number of them), so it is imgadesvith any number of twists
to flip exactly one cubie in place.

Figure 8.2 illustrates the results of@° counter-clockwise rotation: the arrow configuration
on the left will be converted to the arrow configuration ontigét. It is clear that exactly two of
the arrow directions will be flipped. Thus every turn of a fagk flip exactly two arrows, so at
any stage, an even number of the edge cubies will be flippee $nthe original configuration
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Figure 1: Preservation of Edge Parity

zero of them were flipped. (The crossing arrows in the midéllsagh face represent two of the
fixed reference axes. The third axis points at you from oubefgaper.)

The corner cubies satisfy a slightly different conditidme total rotation of all eight must be
zero. Imagine the cube in a solved configuration, put a matkemop face of all the top corner
cubies and a mark on the bottom face of all the bottom corneiesu After some number of
twists of the cube faces, not all of the marks will be on theaog bottom of the cube.

If we look at any corner on a line of sight passing through theter of the cube, there are
three possible orientations of each corner cubie: the mamkbe on the top or bottom (in which
case we will call its rotatio°) it can be rotated20° clockwise (and call this rotatior20°) or
it can be rotated bg40° clockwise (calle®40°). The claim is that if you add all these rotation
numbers for all the corner cubies, you will obtain a numbat th a multiple of360°. In other
words, the total rotation is a multiple 860°.

To see this, we can again look at what a single face turn déesety face turn preserves
this condition, then so will any combination of them. If yaaok at what happens with a single
quarter-turn of a face, two of the faces are turt2d® clockwise from where they were before,
and the other two are turnd®0° counter-clockwise, which is the same ag48° clockwise
rotation. Thus a total rotation & x 120° + 2 x 240° = 720° is applied to the four corner
cubies, so we are done.

This means that if the cube were assembled randomly, onlyhirakof the assemblies could
be manipulated to put the corner cubes in a correct oriematdne third of the time you'd be
off by a total 0f120° and another third of the time you'd be off By0°.

OK, now we are finally in a position to count the total numbecaoifigurations that can be
reached from a solved cube.

First, let's consider the number of configurations that ddo¢ constructed with no con-
straints. In other words, if you pop the cube apart with awdr&zer, how many ways can you
put it together? There afepossible locations for each corner cubie, and if all possilofange-
ments were possible, there would &leearrangements. Similarly, there dr® rearrangements
of the edge cubies. Each corner cubie could be in arfy rottations, so there a@® ways of
aligning the corner cubies and similarly there at&flipping configurations of the edge cubies.

The grand total of configurations is thug:- 12! - 38 - 212, But only 1/3 of them will have
the rotations of the corner cubies right, onl2 of those will have the edge-flipping parity right,
and onlyl/2 of those will have the correct cubie-rearrangement paFitys the total number of
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reachable configurations from a solved cube is:
(8!-12!-2'2.3%)/(3-2-2) = 43252003274489856000.

A cube reassembled at random after breaking it apart wouidi@ave one chance in twelve of
being solvable.

9 Change of Coordinates (Conjugation)

Suppose you have a block of metal and you need to drill a hdénsiys through it. You have a
drill press, but it only drills holes straight down. To dsitbur hole, you'd turn your block so that
the side into which you need to drill is up, you'd drill the Bphnd finally turn your piece back
until the hole is sideways.

This is closely related to how most people solve Rubik’s cubigey know macros that fix
very particular things, like, for example, a macro that cgntflo particular edge cubies in place
leaving all the rest of the cubies exactly the same as theg Wefore the macro was applied.
Suppose the macro you know flips the front-up and the leftdgeeubies in place, but to solve
the particular jumbled cube you're holding, you need to flilge cubies opposite each other on
the bottom. You'd turn the cube over and then do two twistsutiotipe cubies that need flipping
in the front-up and left-up positions, apply the macro, amehtundo the two twists. The two
preparatory twists are like twisting the block sideways pating it under the drill. Drilling the
hole is like applying the macro, and undoing those two prafoay twists is like taking the block
out of the drill press and setting it right-side-up again.

In mathematical terms, we can think of the movement of thelbbs a change of coordi-
nates. If you think of the;-axis as pointing straight up, then putting the block underdrill
is equivalent to, say, moving the blockisaxis to thez-axis of the world. This is a change of
coordinates, and hence the title of this section.

On the cube these preparatory operations are almost altvapgesdr fewer twists. The macros
can be complicated, but they’re worth memorizing since yoly aeed a small number of them.

If we use the letterM to represent the permutation corresponding to the macrowsnd
represent byP the operation that twists the faces so that the ones you wandrate upon are
set up forM, then the inverse aP, P! is the operation to restore the cubies that are not affected
by M to their initial conditions. You would write the entire opdion together a®M P~ 1. In
mathematics, this is called “the conjugationaf by P”. The result: PM P!, is called a
conjugate ofM.

You will see this form over and over in books on group theouny,dometimes in the opposite
form: P! M P. This opposite form is effectively just thinking of the op&ion from the macro’s
point of view—the cube was initially moved to the wrong coufigtion, so to set up, you have to
undo the moves that made it wrong. Then the operation is pedd followed by the moves to
put it back in the wrong position (“wrong” only from the poiof view of the macro, of course).
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9.1 Change of Coordinates Exercises

Although it is not difficult, this is perhaps the most impartaingle idea that you need to use to
solve a jumbled cube. If you'd like to be sure you understandia the following exercise with
theRubik program.

When the program starts up, you will see “Flip UF, UL” in theefihed Macros” choice area
and a solved cube will be displayed. Click once on the “Flip UE area and those two cubies,
the up-front and the up-left, will be flipped in place. Clicadn, and the cube will be restored
to solved. The idea is that the macro does a very precise-thitrtjps the two cubies in those
slots, no matter what they are. Click on the up-face to tuangtarter turn clockwise and again
click on the macro. Again, it flips the two cubies currenthttie up-front and up-right locations
in place no matter what colors they are and leaves the reBeafitbe unaffected.

Click again to put them back, and then turn the top face badoteed (or just click the

[Reselbutton).

If you want to see the macro that does the two flips in actioticadhat as soon as you
clicked on it, its macro pattern appeared in the “Current idaarea. If you click in that area
and then press theturn key on your keyboard, you can watBubik run through the steps and
convince yourself that the macro will really work.

Now, use the “Input Cube” command under the “Edit” pull-domranu to bring up the cubie
editor. Use the editor to change the colors of the up-frodt @m-back cubies so that they are
flipped. (If you're using the default coloration, cube U8 gltbbe red, cube F2 white, cube F8
yellow and cube D2 red. Click on thiginish button andRubik should display a cube with those
two edge cubies flipped. (Remember that you can look at threviea of the cube to convince
yourself that you've got it right.)

Now, suppose you had somehow gotten the cube to this condélmost solved and you
need to finish the job. You know how to flip the UF and UL cubieplarce, but only one of them
is right. But if you give the back face a clockwise turn andtiiee left face another clockwise
turn, the two bad cubies are in a position where the macro parate on them. Apply the macro
and then undo the preparatory setup by turning the left faoaterclockwise and then the back
face counterclockwise. ThuB = BL so P~! = Ib, and theM is the “Flip UF, UL” macro:
M = FRBLUIUbrfluLu.

By the way, here’s an easy way to set up the cube for this e>athat obviates the use of the
“Input Cube” command: From a solved cube, click on “Flip UR"Lthen click on the up-face
to give it a quarter-turn. Apply the “Flip UF, UL” macro agaiand twist the up-face back to its
original position.

Do you see why this works? This is almost like tRd/ P! idea except that we applied
anM~! at the end. (TheP is the “Flip UF, UL” macro and since the order of that macro is 2
P~!is the same a®. The M is the quarter-turn of the top face.) The total operatiomisst
PMP~'M~1 which is called a commutator and leads us smoothly into thétopic.
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10 Commutators

If AandB are two elements of a group (are two permutations, for exejyiblen the commutator
of A andB, sometimes written[4, B]" is defined to beABA~!B~1. More often you'll see it

defined asA—' B~ AB, but the difference is unimportant since it just reversesthes of each

permutation with its inverse.

Why are they useful, and why would anyone ever have come upthig concept in the first
place?

If this is the first time you have ever looked at mathematidgtcts like groups, it may be
the first time you've ever run across a system where the manatipn is not commutative. A
system (including a group) where the order of operation s@¢snatter is called commutative.
In other words, a group is commutative if for every two eletserandb in the groupga*b = bxa.
As we've naticed, this is certainly not the case wiRh

In a commutative system, the commutator@indb would beaba =61, but since the order
of operations in a commutative system is unimportant, weregarse the order of the middle
two objects:

aba™ o™ = a(ba o™ = (aa"'0)b7 = (aa"H)(bb7Y) = ce = e,

wheree is the identity element of the group. Thus in any commutagr@ip, the commutator
of any two objects is simply the identity, and if we were tatikiabout permutation groups, then
the commutator would not move any objects.

Even inR, although most pairs of operations do not commute, thers@re that do. Any
operation commutes with itself, for example,ldrandD also commute since they move com-
pletely different sets of cubies.

So for any two permutations in a group, if their commutatthnésidentity, those permutations
commute. But if they don’t commute, we can think of the comaut as a sort of “measure”
of how non-commutative they are. We will see that if two petations “almost commute” then
their commutator is relatively “simple”. If they are far frocommuting, their commutator will
be complex. Of course the terms “almost commute” and “sifnipiehis paragraph are not
particularly mathematical topics. (Do not confuse thisefssimple” with “simple group”. The
word “simple” is used in this paragraph in a completely n@worous manner.)

Here’s an example. In cycle notation, let= (123 45 6)(7 8 9)(10 11 12 13 14) and
b= (97)(1516 17 18 19 20). Although both of them move a lot of elements, if you work it
out, the commutatd, b] = (7 9 8). If you think about it, it should be clear why this happens.
Although both permutations move a lot of objects, the onlgothat are involved in common
cycles in the two permutations are8 and9. The permutatiom moves, for exampld,, 2, 3, 4,

5 and6 one step forward in a cycle, but sinkeoes not move any of them, they are left in place,
so thea—! in the commutator undoes the actionaodn all six of those elements.

Notice that we cannot say that two permutations are almostrmatative if they only move
a small number of objects in common. In the example below; @ objects is moved by the
two permutations, but their product actually tangles uphadl elements that either moves into
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one giant cycle:
(123456)(678910)=(12345789106).

Also notice that two permutatiomeaybe completely commutative even if they both move
all of the elements:

(12)(34) % (13)(24) = (14)(23) = (13)(24) * (12)(3 4).

The idea that permutation “almost commute” when they do rmtermany elements in common
is only a rule of thumb that can, at times, be completely irexir

Let's look at a practical use of the commutator concept tédbaiivery useful macro: the
“Flip UF UL” macro we used in Section 9.1.

Here is the strategy: We will find a series of cube moves tleatds the top face completely
unchanged except that a single edge cubie on it is flipped.i$ kasier than it sounds—although
we have to be careful with the top layer, our operation caitrarily trash the lower two levels.

If we have such a macrd/, we’ll apply it to flip the one cubie on the top. Then we’ll raga
the top to put a different cubie in that location, at whichrpeve will undo by applyingh —*.
This will obviously undo all the damage on the lower two layand flip only the one cubie on
the top layer. But we moved a different cubie into that lamatby twisting the top face, so a
different cubie will be “unflipped”. After this, we undo thetation on the top face and we're
done.

The only slightly tricky part is to obtain the macid.

You're welcome to look for your own scheme to find this (it's probably easier to search
with the virtual cube, since you're almost certain to mesa ppysical cube in a search like this).
Also, you might consider turning on the “Record” featureRinbik so you don’t have to write
down the moves as you make them. Or, once you've got a macrevtirts, use the “Undo”
operation to figure out exactly what you did.

Here was my approach: | want to flip the UF cubie in place bueiothan that, | want to
leave the rest of the U face exactly as it was. (You may wistoliow along with a virtual (or
physical, if you like) cube. First, let's move the six uppeiftand upper right cubies out of the
way with RI. This puts all six of them on the back of the cube from me.

Next, | turn the front face arount80° with FF. This puts the cubie | want to flip in the FD
location with what was originally the up-face pointing dawtd like to rotate the bottom face,
but some of the cubies that were originally on top would be edpwo I'll bring them back to
the top (which won't be affected by a turn of the bottom) with

At this point, the top is pretty pure, but we've got the wrondpie in the UF position. The
correct cubie is in the FD position so if | turn around the frfate again | could put it in place,
but it wouldn't be flipped, and I'd move two of the top piecesrE's the trick: rotate the bottom
face (it doesn’'t matter which way, but let's go counter-&ltse for and move so we can still
see the cubie that interests us in the LB location. If we &) move those same six top cubies
are protected, andlamove puts the cubie (now flipped) in the correct place nexstariflipped
neighbors.
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Finally, arL gets us exactly the macro we need. If you put all those moygsther, you'll
get the 12-move macrd/ = RIFFLrdRIFLr.

Type those twelve steps into the “Current Macro” windowgtdle cube, and click on the
button to make sure you've recorded it correctly. If you ¢ioly’ll get the top face
with just the UF cubie flipped and a bunch of damage down beltwe.grand goal, of course, is
to get the “Flip UF, UR” macro but this should just Béun/ —'U.

Assuming you've still got the macrd/ in the “Current Macro” window, reset the cube, click
[Apply Macrd, then dou, then hold down thehift key and clicKApply Macrg again followed
by aU. Remember that thehift key causes the inverse operation to be performed. Thisghoul
be exactly what you want. To write it out completely, we jused to work out the inverse @f,
and the whole macro that flips UF and UR in place is:

RIFFLrdRIFLruRIfLrDRIffLIU

The macro thaRubik uses for the same thingRBLUIUbrfluLu, is shorter, but probably
not as easy to rememBeAlthough the derivation our derivation of the macro abovayraseem
a little obscure, there is a way to think of it in terms of slineves that is quite intuitive.

Here is effectively the same macro, but with slices instead:
*LDD*Rd*LD*R

Type the macro above into the “Current Macro” window, relketdube, and then step through
it as you read this text by pressing ttight-arrow key on the keyboard.

The first move gets the piece you want to flip on the bottom ottliee leaving the other six
up-pieces on top. Next, twist the bottdrB0° to get the desired cubie out of the way. Tis8°
is good, since when you reverse that first slice move, it flygsaubie that you eventually want
in the UF position to the correct orientation.

Next, you are going to drive the same middle slice down agadhratate the cubie into that
slot, but if you just do the rotation it will flip that cubie bato the wrong orientation. Thus,
before the slice move you need to get the cubie out of the waghndan be done with a quarter
turn of the bottom in either direction (counter-clockwisasxchosen for this example so you can
keep your eye on the cubie you're trying to flip).

That quarter turn is followed by the same slice move you usighally after which you can
rotate the now-flipped cubie into its slot and reverse theestiove to return it to the top.

Textual descriptions like this are often difficult to follpbut you can reset the cube, and
single step the macro again and again until you have aniirguitsual feeling for what is going
on. When the single stepping reaches the end of the macrppthter is reset to the beginning
of the macro. (If you then click on tjResetbutton, you'll need to click in the “Current Menu”
area to returrRubik’s attention there.) You can back up in single steps by pngstieleft-
arrow key.

3See Section 11 for information about how the macros usegityik were obtained.
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As a cube-solving macro, the author actually uses a revdosed of this one. It seems
quicker to “push” the slice away than to “pull” it toward yaq what the author does is the exact
same movements except that he is effectively standingdabimback face of the cube. You can
try both and decide for yourself.

Another interesting thing to notice is that if you repeatmtacro twice, it cycles three of the
cubies on the bottom of the cube. Try executing it twice towskat is mearft With the slice
moves, this is an easy-to-remember 16-move macro (if a simee counts as a single move) to
cycle three slices as well. But really it is only 14 movescsigou’ll note that when the macro
is applied twice in a row the last and first moves in the middlecel out. But when you do
that, you notice that your sequence inclu@3D which can be replaced iy so it really only
contains 12 moves! Here is the condensed 12-move version:

*LDD*Rd*Ld*Rd*LD*R

Going back to the original problem—to find a macro that flipsap edge cubies in place
without affecting the rest of the cube, one of the reasorsghrticular commutator works so
well is that the operations you used affected such diffepants of the cube. One part of the
commutator simply rotated the top face; the other flipped onk cubie in the top face and did
all its damage to the rest of the cube. As you can see by thi,régse two operations, although
they do not commute, are very close to commuting and henaedaimple commutator.

As an interesting exercise, see if you can find a macro in ttne & a commutator that twists
one corner cubie clockwise and another counter-clockwiséeaves the rest of the cube as it
was. Hint: you need to find a macro that twists one corner ofdhdace and does not affect any
other cubies on that face. The answer appears at the endeéxheection.

10.1 Commutators for Cycling Cubies

We know from our analysis in Section 8 that it is impossibl&itd a macro that will exchange
two corner cubies (or two edge cubies) that will not move amgocubies. But it is possible to
find a macro that will move three cubies in a cycle like (UF UB)BF(URB UFR ULF).

We'll begin with a method to construct a cycle of three coméries using roughly the same
strategy as before. We'll find a sequence of moves to swap tjacant corner cubies on the
top face leaving the rest of the top face intact. Then wettht®the top face a quarter turn and
undo what we just did. This will re-swap one of the cubes weaaly swapped, but will undo
all the rest of the cube damage. The net result will be a cyicteree corner cubies since the
permutation structure will look like thig1 2)(2 3) = (1 3 2).

It is quite easy to find a permutation that swaps two cubiehenup face while leaving the
rest of that face intact.rDRdI, whose inverse ikDrdRI. Thus the final permutation that cycles
three corner cubies and does nothing eldeBRdIULDrdRIu.

We can do this with aery simple macro that is constructed as a commutator, but based o

“You could easily have discovered this yourself since youctearn that the order of your macro is 6, and thus it
might be a good idea to try it 2 or 3 times to see what resulted
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the following observation about a product of permutations:
(ABCD)ACDB)=(BDOC).

It is a bit more difficult to analyze since it involves slice ves that move the cubies that are
being exchanged, so it’s a little difficult to keep track oketty what cubies are being cycled.

In this case it's easiest just to do the operation to a cubesaadvhat happens. The permutation
product above amounts to cycling four cubies, reversingdftbhem and inverting that cycle.

A single slice move*L, cycles the face cubies as follows: (UF DF DB UB). If we thetate
the up-face byl80° we effectively swap the cubies that were UB and DB, so thersesef*L
produces the permutation (UF DB UB DF). The product (UF DF DBF DB UB DF) = (DF
UB DB). A further turn of the up face by80° returns everything else to its original locations.
In the previous example, we left the cubies on the top facel fxel trashed the rest of the cube;
in this case we effectively left the slice in good shape aralrggrashed the rest of the cube. The
full macro to achieve (DB UF UB) is thus UU*RUU, and this provides a method to cycle three
cubies. This is a commutator since the invers&laf *R and the inverse dfU is UU.

The solution to the problem stated earlier to find a macrowlilatotate two corner cubies
in place and will not affect any of the other cubies is baseth@noperation that rotates a single
corner cubiel dIfdF. Then rotate the top face, undo the operation, and rotatethface back.
An answer (and there are, of course, an infinite number ofrs}liee LdIfdFUfDFLDIu.

10.2 Finding Your Own Commutators

As we saw above, it is nice to have as one of the elements offal esenmutator an operation
that does a very simple thing, at least relative to some $udfdbe cubies on the cube. This
can then be combined as a commutator with other operatiqussiibly form useful macros for
cube solution.

Itis also nice, of course if the pieces of the commutator hogts

Here are a couple of useful building blocks for commutattiisyour job to find operations
which, when combined with them, do useful work on the cube.

e FUdLLUUDDRU. This operation is called the monoflip and it flips exactly eoéie on
the top face.

e rDRFDf. This is the monotwist that twists one cubie on a face.
e FF. This is the monoswap that swaps a pair of edges in a slice.

e DR. This cycles three corners, but is not quite as useful.

11 Using “Solve” to Find Good Macros

An interesting but very difficult problem is to determinegift any given position, the minimum
number of moves required to convert that position back tdwsesdacube. The first question that
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arises is what is meant by the word “minimum”? In other wovdsat counts as one move? Most
of the work that has been done in this area is based on two tilfimiof a move. One is called
the “quarter-turn metric” and the other, the “half-turn n&t The quarter-turn metric counts as
a move any single rotation clockwise or counter-clockwis203. The half-turn metric allows a
half-turn as a single move as well.

The “distance” between any two positions is the minimum nemtif moves required to
convert one to the other, counted in one of the two metricsvi@isly, the distance in the
quarter-turn metric is at least as large as the distanceerhétif-turn metric, since any half-
turns would have to be replaced by a pair of quarter turns.notheer way to think of it is that
any solution in the quarter-turn metric is also a solutiothi@ half-turn metric, although there
are additional possibilities in the half-turn metric thamyr(and usually do) provide a shorter
sequence of moves.

The Rubik program currently measures distances in the quarter-tetrian In fact, if you
look in the little window above the “Current Macro” windowdeled “Macro length”, the number
in that window represents the number of quarter-turns requo apply the macro in the “Current
Macro” window.

A related question is this: what is the “worst” possible juimdp of a cube? In other words,
what position or positions require the most moves to retoemtto solved? This maximum size
of the minimum solution is sometimes called “God’s numb&td’s number is not known, but
there are known bounds on it.

In the quarter-turn metric, it is known that God’s number toalse 24 or more. The position
called “superflip” where all the edge cubies are flipped irceles known to require 24 moves to
solve it. (This was determined by exhaustive search on a ateamp God’s number may, in fact,
be 24 since nobody has ever found a position that is knowrgigire more than 24 moves.

Itis possible to obtain a crude lower bound for God’s numbit e following observation.
From a solved cube, there are at mb3tpossible arrangements after the first twist (six faces,
clockwise or counter-clockwise). After two moves, there at mostl2 - 11 positions, nofl22
since one of the 12 moves undoes the original. After thresxetare at most2 - 112 positions,
and following the same reasoning, aftemoves, there are at mak?- 117~ possible positions.
Since it takes as many moves to solve a position as to getttpdiséion from solvedy must be
at least large enough thi2 - 11"~ > 4.32 - 10'? where the second number is the total number
of cube positions. Solving fat tells us that the lower bound must be at least 19. Slightlyamor
careful calculations (throwing out moves lilkd-F or FBfb, for example), one can show that
God'’'s number must be at least 21.

There are computer programs that can find the minimum numfbgeps from any given
position to solved, but for each position, they usually iiega day or so of computation, and in
bad cases may require months.

The[Solvd button inRubik does not find the minimum solution; it only finds one that is
not too long. It looks for a while and then prints the best Sotuit has found up to that point.
Depending on your computer speed and how much patience yaj y@u can change what is
meant by “a while”. In the “Edit” pull-down menu, you can shettime spent in a search for a
good solution to either “Long” or “Very Long”.
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Although its solutions are not guaranteed to be the bestaat they are usually not too long,
S0 you can use the program to search for macros.

For example, in Section 10 we found a macro to flip the UF and tigeecubies in place
that is 26 moves long. If you use the “Input Cube” command putra cube with just those two
cubies flipped and asRubik to solve it, it comes up with a much shorter (14 move) solution
FRBLUIUbrfluLu. Since this is the method to get from the flipped cubies toeshlyou can
invert it to UIULFRBuLulbrf to obtain a macro that goes from solved to the two flipped aubie
configuration. (Actually, in a special case like this, thecneahas order two, so the sequence
works either forward or inverted. Generally, however, tbkison Rubik finds needs to be
inverted, and it never hurts to do so.)

Obviously this strategy can be applied to find a sequencenfpteggal macro you'd like to
use. Just set up the situation on an otherwise-solved catbgdlo’d like to convert to solved,
haveRubik find a set of moves that solves it, and invert those moves. llystiie macros it
finds will not be too bad. For example, the optimal solution“&uperflip” requires 24 moves
andRubik finds a 26 move solution fairly quickly.

On the other handRubik-generated macros may be difficult to memorize for use on aphy
ical cube. For exampl&ubik’s 26-move superflip iLULbudLfubRIBFFudFFBBRRud (or
its inverse, since it is order-2). But here is a 36-move dlipghat is almost trivial to memo-
rize and execute2(4(*RU)>R>D)4(*RU). (The number 36 does not include the whole-cube
moves in the turn count, but counts a slice move as two quiantes, which it really is.) You
can do this one with your eyes closed: “slice-up-slice-ligesup-slice-up-turn cube” and repeat
that sequence two more times. The basic pattd(hRU)>R>U makes a pretty nice pattern
to run in demo mode. Just type it into the “Current Macro” wandand press thStart Demé
button. If you find those whole-cube moves annoying in demdenjust take them out and use
4(*RU)4(*DF)4(*BL).

12 How Humans (Even You!) Can Solve the Cube

With patience, you can solve the cube with just 5 macros: offigttwo particular edge cubes,
one to rotate two particular corner cubies, one to cycleetle@ge cubies, one to cycle three
corner cubies, and one to swap two edge cubies and two carbersc

From any jumbled cube, first get all of the cubies in their ecrpositions (although possibly
flipped and rotated). You will almost certainly have to use ithea of changing coordinates
discussed in Section 9.1 to put the cubies you want to cyckxohnange in the proper places
with one or two twists that you can undo after you've appliseltnacro.

If you only know how to swap a particular pair of edge and cogubies at the same time,
it may require a number of preparatory moves to get all fouhef in the right positions, so
if you've got everything right except for a pair of edge andr=y cubies, it's probably easiest
to get two corners in the right places and exchange them amdthie edge repairs can be done
with one or two of the “cycle three edges” commands.

Once all the cubies are in their correct locations, you’Baéo twist and flip some of them.
Use the same strategy you used before—a twist or two will ppaia that need flipping or
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rotating in the right places after which you apply the magrd ando the preparatory twists.

This method will obviously work but it will take a long time. h€ reason is that you are
wasting a huge amount of effort at the beginning by usingesmély restrictive macros that
move only a tiny number of cubies when in reality you don’tecahat happens to the cubies
that are out of place anyway. Think about putting the firsheoin place. You can probably do
that with just a move or two and the second corner won't be nmacter.

People who are good at solving the cube have a whole set of amatenore restrictive
macros that get the pieces into position and then they hagtlks the five listed above to do
the final work.

Most people tend to solve the cube by first getting the toprlagét, then the middle layer,
and finally the bottom. Although this is very straight-fondait has the disadvantage that once
the top cubies are all in place, almost any twist involves tha layer, so some damage will be
done that needs to be repaired.

The world champion speed-demons often use a different rdetiat avoids this problem.
First they solve & x 2 corner of the cube, at which point there are three sides #rabe turned
freely with no effect on the solved portion. They next extémat to a2 x 2 x 3 block which still
leaves two faces that can be turned without affecting theesigbortion, and a lot of useful work
can be accomplished just turning those two faces.

If you search on the internet, it's easy to find dozens of desons of useful cube-solving
macros. A collection of a few useful macros can be found inexmix B but you'll have more
fun if you try to work them out yourself.

You can practice setting up for macros and then undoing thup &sily on the virtual cube.
First learn exactly what cubies are affected by the halfethazr so built-in macros. Then do the
twist or two for the setup of each one, but rather than appdynfacro by hand, just click on
it in the window to have it happen instantly. Undo your setupves and continue. After you
are confident about your use of the macros, you can learn toeso &s well, and you'll be in a
position to solve a jumbled cube without the help of Bwgbik program (or a screwdriver).

13 Subgroups of the Cube GroupR

In Section 7 we took a cursory look at some of the subgrou@.dh this section we’ll look at
more examples and in addition we'll learn something abootigigenerators and Cayley graphs.

13.1 Group Generators

Given a group (and in this section, we'll almost always use Rubik’s grdRi@as our group),
then if S C G is any subset of the group, then the subgréuigenerated by is the smallest
subgroup ofj that contains all the elements 6f

Surely such a subgroup exists. If any collection of différbgroups contain all the mem-
bers ofS, then their intersection (which is also guaranteed to bdgrawp) also contains all the
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elements ofS and is contained in all of them. The groggs a subgroup of itself, so there is at
least one group in that intersection.

Intuitively, the subgroup generated BYis the collection of all the elements you can get to
by repeatedly multiplying members 6for their inverses together. In the caseRfit's the set
of all positions you can arrive at, starting with the jumbéedbe and applying only that subset of
moves in any order.

For example, the subgroup & generated by F } contains four members. If you're only
allowed to turn the right face, you can only get to four diffier cube configurations. The sub-
group generated by FF } is even smaller: two positions. In other words, if you'reyoallowed
to make half-turns of one face, there are only two possibitipms you can achieve starting
from solved.

Obviously, the group generated by, B, R, L, U, D } is the entire groulR—just a small
number of generators can generate a huge group. We aresteigref course, in subgroups that
fall between the extremes mentioned in this and the prepawasgraph.

13.1.1 Cyclic groups

The simplest situation, of course, is subgroups generatadsingle elemery. If there is some
n such thatg” = 1, then the entire group is given by, g, g%, ¢%,..., 9" '}. (For infinite
groups, which we're pretty much ignoring here, it may be tffais never equal td, so the
group generated by suchyavould consist of]...¢g2,g7%,1, g%, ¢%,...}.) Such groups with a
single generator are called cyclic groups (even if theyifmite). All cyclic groups of the same
order are isomorphic, so, for example, the group generatdddnd the group generated By
behave in essentially the same way.

Since the Rubik grou is finite, any single element dR generates a cyclic subgroup
whose size simply depends on the order of that element. WRirgk it is easy to find the
orders of group elements; just type them into the “Currentidainput area and click on the
[Macro Orde}button. If you type an “F” into that input area, tidacro Ordefcommand will
tellyou it is 4, as you would suspect, but it is easy to try othedom (or non-random, of course)
combinations to see what their orders are.

The simpleFR has a (perhaps surprisingly large) order of 105, meanirntg/thawould have
to repeat that two-turn combination 105 total times befaselsed cube would return to solved.
Try some experiments, especially with commutators. Rsbik to find the order oRUUdBd.
Can you find any elements with a larger order?

As you'd expect (I hope) changing coordinates will not affaanacro’s order. In other
words, if the order ofP is n, and if Q is any other macro, then the order@PQ ! is alson.
Do you see why? Can you prove it?

The order of an element (and hence the order of the cyclicjitogenerates) has to divide
the order of the entire group which we showed earlier to be:

43252003274489856000 = 227 . 31 .53 . 72 . 11.
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Thus you're never going to find any elements whose order isitlie by 13, for example.
All their orders must have prime factors among those showwab

There are some interesting theorems in group theory cdile&ylow theorems that tell us
a bit more about the structure of finite groups. We will notestar prove those theorems (you
can find them in any elementary text on group theory), but suitiply state that one of them
guarantees that there is at least one subgroup of order KL dfiow could we find such an
example?

One easy way would be witRubik. Construct a cube that moves 11 of the 12 edge cubies
in a cycle. We can do that with the “Input Cube” command. Thigk®on the “Solve” button
and we will be presented (after a short wait) with a macro timatoes this 11-cubie cycle. The
inverse of this will take a solved cubie to a position thathis first step in an 11-cycle, so the
inverse of the macro given to us by “Solve” will do the trick.fact, we don’t even have to take
that inverse—the order of an element is the same as the ofrdtsrioverse, so we can directly
use the result given to us Rubik. Here’s one such example (by no means guaranteed to be the
shortest such exampleluFBufDBUDbuRRdLLULLdLLURR.

See if you can find your own.

By the way, you may come up with a macro of order 22 instead diekchuse the way you
cycled the cubies, after 11 steps some of them are flipped steps are required to complete
the loop. In this case, the square of the result will haverotde

Do you see how you might construct other cyclic groups ofougsiorders? Can you construct
an element of order 55 this way?

13.1.2 The subgroup generated bi#F and RR

For our first example of a non-cyclic group defined in terms efigrators, et's begin with a
simple example that we have examined a bit already: the ggemerated by{ FF, RR }.
(Remember that both moves are considered as units—everg ofdtie right facenasto be a
half-turn and similarly for the front face. In fact, to emiwe that, let's give single letter names
to each:p = FF andp = RR.

We know thatp? = p? = 1 and we found earlier (or we can easily check wRthbik) that
(¢p)® = (p)® = 1 and that no smaller power will do. In other words, the ordepefnd also
of p¢ is 6.

If we start looking for possible group members, it is cleatttinere are only the following
18 possibilities:

The ¢s andps have to alternate or they will cancel to the identity. Ferthore, if there are
more than §¢p) or (p¢) pairs in a row, that set of 6 will also cancel to the identityisiclear
that if you multiply any of the elements in the list abovedpr by p on the right or left, it will
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cancel to something else on the list. Thus the size of thergitksubgroup is at most 18.

But there are some duplicates in the list above. We will shae example of a duplicate
pair; there are six similar duplicate pairs in the list ahavhich will show that the size of the
generated subgroup is 12 (and you can test this Ritbik, if you wish, to see that all 12 are
different).

Here we will show that)(pg)? = (pg)3p because they are both inversegpb)3p and the
inverse of a group element is unique. To see that they areilwhses, we just multiply them
together and show that both collapse to the identity:

(09)°p - d(pd)* = (p9)*(p9)(p9)* = (p)® = 1.

Similarly, because of repeated cancellations of equal efesrin the center, we obtain:

(p9)°p - (p0)°p = pdpPpdpPOPPPGP
pPOPOPOPPOPPP
pPOPPPPPPHP

= pp =1L

The complete group consists of the members of the top two ofse 18-element list. Or
the top and bottom row; whichever you prefer—each elemeniherottom row is the same as
an element in the middle row. This group can be shown to beasphic to the dihedral group on
six objects, which is essentially the set of symmetries afgular hexagon that you're allowed
to rotate or flip over.

In fact, a slightly easier to use set of representatived®nembers of the group is this (the
parentheses just help visualize the grouping). It's a go@daise to convince yourself that all
the elements in the list below are different and to try to iplyttogether various combinations
of them.

L p (pp) (pd)p (p9)* (p9)*p
¢ (¢p) (op)¢ (0)* (9p)%0 (9p)° = (po)?

This sort of analysis is often possible given a set of refetithat the generators satisfy, but
it is often surprisingly difficult to do such an analysis. Wihould guess, for example, the the
group generated b{yF, R } satisfying:F* =R* = (FR)!%> = 1 (plus a few other relationships)
would generate a subgroup containing 73483200 members?

The concept of generators, however, is very powerful wheargavorking on a puzzle like
Rubik’s cube. The generators are basically the set of moeeallow ourselves to do, and the
size of the generated group is the number of positions aabie¥rom that set of moves.

13.1.3 The Cayley Graph

One nice way to visualize how a group is generated from a sgéonérators is with a Cayley
graph. A Cayley graph is simply a picture with nodes indiegach group element and arrows
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from one to the next when one of the generators will take yomfthat element to the next. As
an almost trivial example, here is the Cayley graph for tlreigmgenerated by the single element
F:

F

N
N

The Cayley graph for the group examined in the last sectiaghgemerated by and¢ is a
little more interesting. Starting frorm, any element can be obtained from a previously-obtained
element by multiplying it on the left or right by or p. Obviously, at least some of the time this
will cancel a¢ or ap that was multiplied on earlier, but eventually you will cinta complete
list of the elements in the group.

F

The figure below illustrates the Cayley graph for that groblements that can be obtained
from another by multiplying by are connected with simple arrows; elements that can be ob-
tained from another via a multiplication lpyare connected with double-line arrows.

P () €—>(po) p&=—>(pop) > <—>(p¢)*p

/ N
4

P> () €= (p) p€&——>(¢p) *=—=>(¢p)*

Let's examine a more complicated situatioty, the alternating group on four objects which
was mentioned in Section 8.1. As a reminder, the alternajiogp onn elements is the per-
mutation group consisting of all even permutations of thalsiects. An even permutation is a
permutation that contains an even numbe2-afycles.

Here are the elements df;

(1)  (123) (124) (134) (234)  (132)
(142) (143) (243) ((12)34) (13)(24) (14)(23)

Table 3 is the multiplication table for the alternating good,.
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8¢

(1) | (123) | (124) | (134) | (234) | (132) | (142) | (143) | (243) |(12)(34)[(13)(24)|(14)(23)]
M) | (123) | (124) | (134) | (234) | (132) | (142) | (143) | (243) [(12)(34)[(13)(24)[(14)(23)
(123) | (132) |(13)(24)] (234) [(12)(3D)[ (1) | (143) [(14)(23)] (124) | (134) | (243) | (142)

(124) |[(14)(23)] (142) [(13)(20)| (123) | (134) | (1) | (243) [(12)(34)[ (143) | (132) | (234)

(134) | (124) [(12)(34)] (143) [(13)(2D)[(1)(23)] (234) | (1) | (132) | (123) | (142) | (243)

(234) |(13)(24)] (134) [(14)(23)] (243) | (142) |(12)(34)| (123) | (1) | (132) | (143) | (124)

(132) | (1) | (243) [(12)(34)[ (134) | (123) [(14)(23)] (142) [(13)(24)] (234) | (124) | (143)

142) | (234) | (1) | (132) [(14)(23)[(13)(24)] (124) [(12)(34) (143) | (243) | (134) | (123)

(143) [(12)(34)] (123) | (1) | (142) | (243) [(13)(24)| (134) [(14)(23)] (124) | (234) | (132)

(243) | (143) [(IH(23)] (124) | (1) [(12)(34)] (132) [(13)(24)| (234) | (142) | (123) | (134)
(12)(34)| (243) | (234) | (142) | (124) | (143) | (134) | (132) | (123) | (1) [|(14)(23)[(13)(24)
(13)(24)| (142) | (143) | (243) | (132) | (234) | (123) | (124) | (134) |23 (1) [(12)(34)
(14)(23)] (134) | (132) | (123) | (143) | (124) | (243) | (234) | (142) [(13)2H)[(12)(34)] (1)

Table 3: The Alternating Groug,



What we will examine here is the Cayley graph of the altenmtatiroupA,4 based on two
permutations that generate the entire grqu®2 3) and(1 2 4).

The following figure shows the Cayley graph with the follogiinonventions. If a group
elementz can be obtained from an elemenby pre- or post-multiplying it by(1 2 3) then a
simple arrow points fromx to y. If y can be obtained from by pre- or post-multiplication by
the permutatiorl 2 4) then a double-line arrow points fromto y.

12)(34
243 (234)x
(14 \(134)
é —
B &
(1@(% \E (24)
<7
% >
.. /
(145 2)
\( <
(12 3)

(1/

Since we know that the alternating group is generated by ®vmptations that cycle three
objects, two of which are the same, it is actually easy to firmlilagroup of the Rubik cube
groupR that is isomorphic tad,. Just take two permutations that cycle three edge cubies (or
corner cubies, it doesn't really matter), and as long as titbase cubies are shared, those two
operations will generate a subgroupfisomorphic toAy.
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Here are two moves that do the tricikdIFFLDRUFFu, UdLuDFFUdLuD, although there
are dozens of other pairs that would generate similar isphiosubgroups.

13.1.4 More subgroups ofR

It is surprisingly difficult to find small subgroups based @mgle sets of generators. The sizes
of the subgroups seem get large fairly rapidly except in thgkest cases. It is certainly pos-
sible to construct small subgroups but they are usuallydasefairly complex generators. In
Section 13.1.1, for example, we found a single generatopiteluced a group of order 11, but
it was based on a generator that is 27 moves long. (\Reibik found a 27 move sequence;
there may be shorter ones.)

Listed below are some subgroups that are generated fromlaramaber of generators. As
you can see, most of them would not be too useful for learnovg o manipulate the full cube.

| | Generators | Size | Factorization]
1 U 4 22
2 U,RR 14400 26.32.52
3 UR 73483200| 26.3% .52 .7
4 RRLL, UUDD, FFBB 8 23
5 RI, Ud, Fb 768 28.3
6 RL, UD, FB 6144 211.3
7 FF, RR 12 2. 32
8 FF,RR, LL 96 25.3
9 FF,RR, LL, BB 192 26.3
10 FF,RR, UU 2592 25. 314
11 FF,RR, LL, UU 165888 211 .34
12 FF, BB, RR, LL, UU 663552 213. 34
13 FF, BB, RR, LL, UU, DD 663552 213. 34
14 LLUU 6 2.32
15 LLUU, RRUU 48 2%.3
16 LLUU, FFUU 1296 24. 3%
17 LLUU, FFUU, RRUU 82944 210. 34
18 | LLUU, FFUU, RRUU, BBUU 331776 212 .34
19 LUlu, RUru 486 2.3°
20 LUlu, RUru, LDId 17496 23 .37
21 LUlu, RUru, LDId, RDrd 52488 23.38
22 >F, >L 24 23.8
23 *F U 184320 212.32.5
24 *F, U, *U 4423680 215.33.5

In the table above, entry 4 is called the slice-squared grenfpy 5 is the slice group, and
entry 6 is the anti-slice group. Entries 19, 20 and 21 are yred by small sets of similar
commutators. Below the double line, entry 22 is the wholeecgroup and the other two are
produced with a standard move of the up face combined wittooh&o slice moves.
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Another interesting observation is that the same subgrsugenerated by entries 12 and
13—adding the addition&D move did nothing. This indicates thald can be generated by
the other 5 moves, and it camD = RRFFBBLLUURRFFBBLL. Similarly, the entire cube
groupR can be generated by quarter-turns of only 5 faces:

D = RRLLUURRBBRRLLFFLLURRLLUURRBBRRLLFFLLUU.

14 Direct Product Groups

Given two groupsH and/C, it is possible to construct another grodphat is called the direct
product ofH andK (writtenG = H x K) as follows:

For everyh € H andk € K then(h, k) € H x KC, where(h, k) is an ordered pair with the
first element and the second. Assuming thatis the group operator fdt and® is the group
operator forkC, then the group operat® for G = H x K is defined as follows:

(h1,k1) ® (ho, k2) = (h1 * ha, k1 © k2).

In other words, just apply the operators of the appropriabeigs to the elements of those
groups.

Of course it needs to be proven thdtx K is a group, so we need to show that it contains
an identity, inverses, is closed, and satisfies the assgrlaws. All of these are petty straight-
forward and follow from similar properties of the two groupat make up the direct product:

Identity: If e, andey, are the identities of{ and/C, respectively, thefe,,, ;) is the identity
of H x K:

(en,ex) ® (h, k) = (en x hyer, © k) = (h, k).
Inverses: If (h,k) € H ® K then its inverse ish !, k1), since:
(k)@ (h"H k™) = (hxh L EO k™) = (en, er).

Closure: If (h1,k1) € H x K and(hs, ko) € H x K thenh, andh, are inH and because
of the closure of+, so ishy * ho. Similarly, k; ® ke € K. Thus the operatap is well-defined:

(h1,k1) @ (ha, ko) = (h1 * ho, k1 © ko) € H X K

sinceH x K containsall possible ordered pairs of elements fréfrand .

Associativity: As with the other properties, the associativity of the ofiera® follows
directly from the associativity of the operationand®:
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(h1,k1) ® ((ha, k2) ® (hs, k3)) = (h1,k1) ® (he * hs, ks © ks3)

hi % (ha x h3), k1 © (ko ® k3))
(h1 * ha) * hs, (k1 © k2) © k3)
(h1 % ha), (k1 © k2)) ® (hs, k3)
(

hl, kl) X (hQ, /{2)) ® (hg, kg)

(
(
(
(
(

In a direct product, the two parts (the left and right sidethefordered pair) act “indepen-
dently” in that there is no “mixing” of the two halves. If wedk at the set:S = {(h,e) : h €
H}, it is easy to see thaff is a group, and not only that, it is isomorphick Similarly, the
set of all ordered pairs where the first elementisthe identity ofH, also forms a group that is
isomorphic toC.

If a groupgG can be represented as a direct product of two other groupsargoeffectively
factoring it in that same way that you factor integers. Onoa fiave the factorization, you
can learn almost everything abaitby studying the properties of the two groups whose direct
productg is.

There are many subgroups®fthat are direct products (or to be precise, iammorphicto
direct products. In many cases, these arise in a naturalmeaning that the two groups making
up the direct product really do “have nothing to do with eatifed’ in the larger group.

Perhaps the simplest example is the group generated by thentwesF amdB. Clearly,
twisting the front face has no effect on the back face and-varsa. This group is like the direct
product of the group generated by jisand the group generated by jistEach of those groups
has four elements, so the direct product will have 16. If weose not to move the front face
(in other words, we apply the identity to it), but allow anyesation on the back face, that’s like
choosing(ey, k), in our definition of the direct product above. It is clearttheaving the front
face alone and twisting the back is by definition just likestivig the back. Similarly, if the back
face is left unmoved, the for possible operations are etgprivéo the group generated By

Are there any others? The answer is: Plenty! Consider thef egterations that leave all the
corners fixed. We've seen a bunch of these in our cube-sohegyos that flip or cycle edges.
There’s a similar set of operations that leave the edges &ireldnove the corners. The direct
product of these two groups is huge (but not the entire gfup

There are many, many, smaller examples. Consider the gifaageoations that leave every-
thing in place except for the four edge cubies on the bottare &nd another group that leaves
everything fixed except the four corner cubies on the rigte faAlthough the bottom and right
faces intersect, the two groups move no cubies in commorhesditect product of those two
groups would be a group that jumbles the four bottom edgeesuaind the four right corner
cubies, and leaves all the rest of the cubies fixed.

There are thousands of other possibilities. Try to thinkashe of them yourself.

42



15 The Subgroup generated byJ and R

In the previous section, we stated that the group generatdéldebtwo element&) andR has
order 73483200—it’s a relatively huge subgroup.

The proof that this is the case will be based upon a few mabwtscan be discovered by
computer searchP; = mRUrURUUrUU andP, = urUURUrURURUUruRur. These can be
combined to make the very interesting; = P,UP,u.

Macro P; cycles three edge cubies and maé&xorotates three corner cubies in place. Both
leave everything else in place. FurthermadpPg moves some corners around, but leaves all the
edge cubies in place except that it exchanges the UL and UEB=dts fairly clear that since this
single exchange is possible, that, combined with conjogatian produce any rearrangementwe
like of the edge cubies, assuming that we don’t care whatdrapfo the corner cubies in the
process.

But in a sense the edge cubies can never be flipped. Imagwedran arrow on each of the
seven edges so that the set of arrows around both the up-gintdatces form loops. (This would
look like a figure-8 if it were flattened out.) Clearly, if alleacan do is twist those two faces, all
the arrows will point the same way after any sequence of sumbem1 Thus the orientation of
every edgie is completely determined in every position for @mbination ofJ andR moves.

So if we only care about the group of movements of the edgessuwbinere the locations and
rotations of the corner cubies don’t make any differencepiain the symmetric group on 7
elements, those being the 7 edge cubies on the two adjacest fihe order of the edge group
is 7! = 5040.

It can be shown (but we will not do it here) that the group ofnpatations of the corner
cubies, ignoring twisting, has order 120. Since any setm@elof them can be twisteld/3 turn
and there are 6 corner cubies, once the orientations of Seafi tre determined, the sixth is
determined, but the orientations of the other 5 are arlyitréhus the size of the corner group
(ignoring the movements of the edges) 2 x 3° = 29160. If all possible edge configurations
could occur with all corner configurations, the entire U-R@wup would consist 05040 x
29160 = 146966400 elements.

But since this is a subgroup & we are still constrained by the fact that every permutation
of all the cubies (edgies and cornies) must be even, so otflpfthe positions are possible, for
an order 0fl46966400/2 = 73483200. This is the size of the group, although we will not prove
that, either.

16 Group Isomorphism

In Section 6.3 we mentioned the fact that the group of all pgations on three objects behaved
exactly the same as the set of symmetries of an equilatemagte. We said that two groups that
behave identically are called isomorphic.

Two groups are called isomorphic if there is an isomorphistavken them. An isomorphism
is al — 1 onto mapping from one group to the other that preserves thegoperation.
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To state this in a formal way, suppose that we have two graupadH wherex is the group
operation ing and® is the group operation i(. We say thag is isomorphic tdH if there exists
al — 1 onto functionf : G — H satisfying the following condition: for every pajt, g2 € G,
if ,f(gl) =h andf(QQ) = hoy thenf(gl * gg) = hy ® hs.

A*“1—1 onto function” is one that matches up every element from ete/gh every element
of another so that all the elements of both are used and eaamaps into exactly one other one.

There may be more than one way to do the mapping, but that daeatier—as long as
there is at least one way to do it, the two groups are said tedyearphic.

If two groups are isomorphic, they are virtually identicat's-almost as if you just made a
mistake and used different names for exactly the same thiwgs this does not mean it's easy
to find such isomorphisms or to prove that one exists, butésdoean that if you do find one,
you have a way to translate the different names back and forth

As an example, one very simple group is the set of permutationthe cube that can be
achieved by just twisting the right face. This group obvligumsas four elementsl, F, F? and
F3. Let’s call this groups. A different group, call itH, is the set of all permutations that can
be achieved by twisting the up face. Thdsconsists ofl, U, U? andU?. It is clear that these
two groups behave identically, and we can show that theysamarphic by checking that the
function f that mapsl — 1, F — U, F2 — U? andF® — U3 satisfies the conditions to be an
isomorphism.

Note that thef above is not the only function with the appropriate progstti Another
function that is an isomorphism maps— 1, F — U3, F2 — U2 andF? — U. This just shows
that if you swap clockwise and counter-clockwise rotatjahey behave pretty much the same
way.

To say that two groups are isomorphic is to put quite a strestriction on their relation-
ship. If we simply require that the functigh preserve the group operation, but do not require
that it bel — 1 or onto, we have a different relationship that is called a domrphism. Of
course an isomorphism is a special case of a homomorphignthéne are many, many more
homomorphisms available.

Isomorphisms are usually used to show that two apparerffgreint groups are essentially
identical, so they are usually constructed to relate difieigroups. They can, of course, be
mappings of a group into itself (in which case they are oftalted automorphisms). Since
the most important group from the point of view of this papethe cube grouf, many of
the examples that follow will be homomorphisms from thatugranto itself. In general, a
homomorphism can relate any group to any other, butin theisjgase where a homomorphism
maps a group into itself, it can be called an endomorphism.

Here are a couple of examples of automorphisms involignd subgroups of it. First,
consider the groug = { 1, F, F2, F? }. There are two automorphisms Gf The first is not
too interesting, since it maps every element to itself, Imatler automorphism takdsand F?
to themselves but exchangeésindF3. From the point of view of the cube, these two groups are
mirror images—the counter-clockwise moves are swappdutivé clockwise groups, but other
than that, their behavior is the same.

There are plenty of automorphisms of the full groiponto itself. Imagine two identical
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physical cubes originally in the same orientation, and vke the one on the right and rotate
it 90° clockwise about its front face. At this point, the front analck faces have the same
orientation, but the top, right, bottom, and left sides o @arrespond to the right, bottom, left
and top sides, respectively, of the other. If we considerranye sequence on one and replace
the letters in it as follows:

F—F B—B U—R R—D D—L L—U

f—f b—b u—sr r—d d—l |—u

then the moves on the two cubes will behave in exactly the saaye There are (counting
reflections) 48 automorphisms that are very similar to thid @orrespond to the symmetries of
acube.

We will not prove this here, but the Rubik cube grolfs so large and complicated that it
contains subgroups that are isomorphic to every existioggof order less than 13, and it also
contains every abelian group of order less than 26. (Remethatan abelian group is a group
where the operation is commutative.)

For a challenge, you might try to find some of those subgrotps.example, consider the
quaternion group. This is a group of order 8 that consist§lof, j, k, —1, —i, —j, —k} that
satisfies the relationg? = j2 = k? = ijk = —1.

17 Pretty Patterns

In addition to just solving the cube, it is possible to craatmy pretty patterns. You can use the
Rubik program to search for your own pretty patterns. Use the ‘iGube” command to draw
in whatever pattern you want, and if it is a legal patt&aopik can find a sequence of moves to
“solve” it. The inverse of that solution will generate thetpan from a solved cube.

In the list below, to arrive at each of the patterns you nedukefgin with a solved cube and
apply the given macro.

These patterns were found on the internet—obviously, theesaare not universal. The
itemized list below contains the move sequence to reachdtterp from solved, together with
the name of the macro.

=l L

¢ 2(4(*RU)>R>D)4(*RU): Superflip. Figure P1.
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e RDRFrfBDrubUDD: Green Mamba. Figure P2.

e FFDFFDDLLULLULLBDDRR: Six Square Cuboids. Figure P3.
e UFFUUIRFFUUFFLru: Christmas Cross. Figure P4.

e RRDuULdALLRBRRUBUrfdFu: Twisted Duck Feet. Figure P5.

e UULLrbRRurDRFFLrFDLLUU: Plummer’s Cs. Figure P6.

e LBBDRbFdIRJUfRRu: Anaconda. Figure P7.

e dFdLBDDFFURbURRFdARFUU: Striped Cube. Figure P8.

18 Miscellaneous Short Topics

The topics here are interesting, but are a bit too short terdego have an entire section devoted
to them. They are not in any particular order.

18.1 Rotation of the Center Cubies

On a standard cube, it is impossible to tell after a seriesvist$s whether the center cubie has
the same orientation. Some cubes made for advertising pesgwave images on some of the
faces, and if you simply apply the standard cube solutiorhod, you'll find that you've got
everything correct except that some of the center facesoéaéed from their solved positions.
You can observe this with a physical cube: Put a sticker otutfece of a solved cube with an
arrow pointing toward the front face and similarly one on fitet face pointing toward the up
face. Then apply the following move:

URLUUrIURLUUrl = 2(URLUUTrl)

At the end, you will find that the arrow on the U face has rotdigd 80° (and if you had
similarly marked the orientation of the other faces, you lddind that this transformation leaves
them unchanged. Here is a transformation that twists U ang@beach in opposite directions:

RIFFBBRIURIFFBBRId
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Although at first it doesn’t look like it, the macro above is fu might expect) a commuta-
tor. LetP? = >F>FRIFFBBRI and letQ = U. Then the macro above BQP Q1.

And finally, here is one that rotates the U centerd0y clockwise and at the same time
rotates the F center cubd®° counter-clockwise:

FbLrUdfDuRIBfU

This is also a commutator. L& = FbLrUd>R andQ = u, and the macro is equivalent to
POP QL.

In exactly the same way as we have seen before, there is af gatity associated with the
total twist of the center cubies: the grand total of the tsvistust add to an even multiple t§0°.

18.2 Superflip

In Section 11 we mentioned the permutation called supelapftips every edge cubie in place
and leaves all the corner cubies unchanged. It has been ghatthere is a 24 move macro that
achieves superflip and it has also been shown that supexfjipres24 quarter-turns so that it

serves to prove that 24 is a solid lower bound on God’s nunthemjaximum length of the best
possible solutions to any jumbled cube).

The superflip permutation is interesting in that it is tmy permutation that commutes with
every element ofR. The set of all permutations that commute with every elenretiie group
is called the center of the group, and the center of a group fact, a subset of the group. The
center ofR is a two-element group consisting of the identity and sujperfl

Since at first glance, a solved cube with superflip applietdqmretty messed up, you can
hand a superflipped cube to a friend, have him make two or thoees and hand it back to you
while your eyes are closed. You then apply superflip, and sagrsomething like “. .. and now
it's almost done...”, open your eyes, and undo the final feistay

18.3 The Whole-Cube Group

One interesting group that is very easy to study using yowsighl cube is the whole-cube
group—the rigid symmetries of the cube. It is pretty obvithat there are 24 such symmetries
since the top face can be moved to any of 6 faces, and once tlaerbe rotated into any of four
positions for a total of x 4 = 24 symmetries. (Notice that if we also allowed mirror images,
there would be 48 total symmetries.)

To work with the group, we’ll need some names for the groumelats. In this section only,
we’'ll use the namé to represent a rotation of the whole cube clockwisédby instead of the
“>F" used byRubik and similarly for the other rotations.

If you wish to experiment with these permutations, it's bly a good idea to label the face
cubies on your physical cube with “U”, “D”, et cetera. The adtage of working with this group
is that there’s no way to scramble your cube accidentally rviight try to find subgroups of this
group, for example, and to see what those subgroups amogebtuetrically.
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It's a bit of a mess to describe all 24 elements. There are @ftious onesli (the identity),
F,L, F, R, B, D, FF, RR andUU. (We don't need.L, BB andDD sinceLL = RR, et cetera.)
The other 14 permutations can also be expressed as rotatistnsnfortunately, about oddball
axes. If we consider the four axes that connect oppositeecef the cube (like corner URF
with corner DLB, et cetera) there are two rotatioh8(0° and240°) that map the cube to itself
for 8 more permutations. We also have the 6 axes connectngethters of opposite edges of
the cube, and a rotation @80° about each of these is also a rigid symmetry of the cube.

But rather than invent new names for these rotations, westlljst the other ones as products
of the primitive face rotations that we already have. Fomepie, the rotation 0f80° about the
axis passing through the centers of the edge cubies UL and DIRU.

The first table below shows the definitions of the moves in axieedo read form: a cube
that has been opened up. The entry labelEdshows the initial configuration and the others
show how those faces are rearranged by the various rotafitissis very useful since the three-
move combinations chosen to represent the last six perimsadre somewhat arbitrariaLU
= DRF, for example.

The second is the multiplication table for the group of rigidves of the cube. In the list
below, “F” means to grab the front face and turn the entire cube closskby a quarter-turn, et
cetera. To multiplyRR with FL, for example, choose the entry in the column WRR on top
and the row with-L on the left. The product is the permutation in that column iavet BR.

This group contains 24 elements, and is isomorphic to thaersgtnic group on 4 objects (the
group of all permutations of four objects. To see why thia@jce that a cube has four diagonals
and that with an appropriate twisting in space, those foagainals can be mapped in themselves
in all possible ways. Since the entire group is effectivaly symmetric group on four objects,
you can find the alternating group on four objects as a sul@setyou figure out which elements
are members of the alternating group?
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U L F U R B
[L[FIRr]B]| [p[F]u]B]| [L[o]R]u]| [F[R]B]L]| [u]F]p][B]| [L]U]R]D]

D R B D L F

U D D U F R
[B[L]F|R]| [R[F]L]B]| [L[B]R]F]| [R][B]L]F]| [P[R]U]L]| [F[D]B]U]

D U U D B L

B L R B L F
[u[r]p]L]| [F[u]B]p]| [B[u]F]p]| [P[L]u]Rr]| [B[P]F[uU]| [u]L]D]R]

F R L F R B

F D R D L B
[R[u]L]p]| [B[R][F]L]| [p[B]u]F]| [F[c]B]R]| [u]B]D][F]| [R]D]L]U]

B U L U R F

Table 4: Whole Cube Move Definitions

1 F R U B L D FF RR UU FR RB BL LF LB FL RF BR FRU RUF LBD BUR LFU BLU
1 1 F R V) B L D FF RR UU FR RB BL LF LB FL RF  BR FRU RUF LBD BUR LFU BLU
F F FF RF FR 1 LF FL B LFU LBD RUF R U FRU L BUR BLU D LB BL RR BR UU RB
R R FR RR RB BR 1 RF FRU L BLU LBD BUR B ) D F RUF LFU UU LB FL LF BL FF
U U LF FR UU RB BL 1 BUR RUF D FRU LBD BLU LFU B L F R BR FF LB RR RF FL
B B 1 RB BL FF LB BR F LBD LFU U BLU RUF L FRU D R BUR LF FR UU FL RR RF
L L FL 1 LF BL RR LB BLU R FRU F U LFU BUR RUF LBD D B FF RF FR RB BR UU
D D RF  BR 1 LB FL UU RUF BUR U R B L F LBD BLU LFU FRU FR RR RB FF LF BL
FF FF B BLU RUF F FRU BUR 1 UU RR BL RF FR LB LF BR RB FL L u LFU D LBD R
RR [ RR LBD L BUR LFU R RUF UU 1 FF FL LF BR RB RF FR LB BL BLU D F U B FRU
UuU ([ UU LFU FRU D LBD BLU U RR FF 1 BR LB FL RF RB BL LF FR R BUR B RUF F L
FR FR FRU RUF LBD R U F BR BL FL LB RR RB UU 1 LF FF RF D B L LFU BLU BUR
RB | RB U LBD BLU BUR B R LF LB RF  UU FL FF BL BR 1 FR RR LFU FRU D L RUF F
BL | BL L U LFU BLU RUF B FL FR BR LF UU RF RR FF LB 1 RB BUR F FRU LBD R D
LF LF BUR F FRU U LFU L RB RF LB FF FR UU BR BL RR FL 1 B BLU RUF R D LBD
LB LB D B L RUF LBD FRU RF RB LF 1 BL RR FL FR UU BR FF F R U BLU BUR LFU
FL FL BLU D F L BUR LBD BL BR FR RF 1 LF FF RR RB UU LB RUF LFU R B FRU U
RF [ RF RUF LFU R D F BLU LB LF  RB RR BR 1 FR FL FF BL UU LBD L BUR FRU U B
BR | BR R BUR B FRU D LFU FR FL BL RB FF LB 1 uu RF RR LF U LBD BLU F L RUF
FRU | FRU BR FF LB FR UU LF R BLU L B RUF LBD D U LFU BUR F 1 RB BL RF FL RR
RUF | RUF LB BL RR RF FR FF D U BUR L LFU R LBD F FRU B BLU FL 1 LF UU RB BR
LBD | LBD UU LB FL RR RB FR LFU B F D L BUR BLU R U FRU RUF RF BR 1 BL FF LF
BUR [BUR RB FL FF LF BR RR U D RUF BLU F FRU B LFU R LBD L BL UU RF 1 LB FR
LFU|LFU RR LF BR UU RF BL LBD F B  BUR FRU D R BLU RUF L U RB  FL FF FR 1 LB
BLU|BLU BL UU RF FL FF RB L FRU R LFU D F RUF BUR B U LBD RR LF BR LB FR 1

Table 5: Whole Cube Multiplication Table
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A Unjumbling the Cube

The most obvious way to unjumble a cube is to pop it apart widtrawdriver and then re-
assemble it in the “solved” state. If you have tRabik program, however, there is an easier
way.

A.1 The Screwdriver Method

First, the screwdriver approach: Turn one face of your cybgadegrees. Next, insert the tip of
the screwdriver under one of the edge cubies on that facgdhigtist turned and pry it up. The
edge cubie will pop out. Every other cubie can now be easityoreed by hand, but pay attention
to the first few you remove so you'll remember how to fit themibiagether.

To restore the cube, notice that every cubie is differerd,that there are two types—corner
cubies with three colored facelets and edge cubies with blared facelets. Notice that if you
know those three or two colors, there is only one place in tied iube where the cubie can go,
relative to the six face cubies that are all connected in émeral “skeleton”.

After the cube is disassembled completely, put it togethdre by cube, where each cube is
placed in its correct position relative to the central stadle Save an edge cubie (one with two
colors) for last, and to insert it, turn the face with the rimigscubie 45 degrees relative to the
rest of the cube, hook one corner of the cubie connector ir@@kmost-reconstructed cube, and
push it in until it snaps into place.

A.2 The Rubik Method

The Rubik program has a built-in solver that can unjumble any cube. tWba will do is to
enter the cubie configuration of your currently-jumbledeabd then asRubik to solve it. The
solution is simply a list of sides to twist that will bring tlhienbled cube to solved.

Before going to the trouble of entering your own cube, firg bew the solving feature
works. Fire upRubik and then click on thElJumble Cubpbutton that you will find in approxi-
mately the center of the control area to the right of the dngwaf the cube. This will jumble the
cube as if you had randomly turned hundreds of faces in rardiggations.

Next, click on thgSolve Cubgbutton that lies just to the right of thédumble Cubpbutton.
This will take a while, depending on how fast your computer@s very slow older machines
it may take up to a couple of minutes. In fact the first time yolves a cube after starting up
Rubik, it takes even longer because there is some initializagguired of the solver that only
has to be done once. On a relatively quick machine (as of 2@3akes, on average, about 15
seconds to initialize and solve. But beware! Sometimesydoticular cubes it takes a lot longer.
An example that seems to take a long time for some reas®(friSRRUU).

WhenRubik has a solution, a little window will pop up telling you thakidone, and an
encoded solution will appear in the window labeled “Curfdacro”. The solution consists of a
series of letters and each letter corresponds to one guesittrof a face. The letters “U”, “L”,
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“F7, “R”, “B" and “D” (and the lower-case versions of thosersa letters) stand for “up”, “left”,
“front”, “right”, “back” and “down”, respectively.

If the letter is in upper-case, it means that you should gthapface with your right hand
and turn it a quarter-turn in the direction pointed to by ydght thumb. If the letter is in lower-
case, turn it a quarter-turn in the other direction. m@lose the orientation of your cube—keep
whatever face was initially up pointing up and whatever faas in front should remain facing
front.

Click on the[OK] button in the little window to make it go away. Now, you cang@éstep
through the solution by clicking repeatedly on tight-arrow key.

When you have entered your own cube’s configuration and gelutian, the best way to
solve your cube if you're not totally familiar with the movestriptions is to click on the arrow
key once, then find a face on your cube that you can twist to ritdéek exactly like the cube
on the screen. Then press tm@ow-key again, do one more step, and so Bubik’s solutions
are typically less than 30 twists long, so it will not takedoonce you have entered your cube’s
colors into the program. (The little cube visible in the upgght of the drawing area shows
what the back of your cube should look like, which can be quétipful.)

If you are making these moves on your physical cube and yodesug notice that you're
mixed up, it is probably easiest just to re-enter your culzei fyon’t need to change much) and
to click on thgSolve Cubébutton again. The new solution will probably be much shasiece
you will presumably have made some progress toward theignlbefore you committed your
error.

Note: If your cube’s colors are different from those in Rubik you can changeRubik’s
colors to match. See the documentation that comes with the pgram.

So all you need to know how to do is to load your cube’s colotgpatintoRubik. To do

so, click on th¢Input Cubgentry in thgEdit] pull-down menu. A new window will appear that
displays and unwrapped version of the cube. One of the cisbtaghlighted. To set its color,

simply click on the appropriate color from the palette ofazslat the bottom of the window.
After each color is entered, the highlighted cubie advaniég®u make a mistake, simply click
on the cubie that's in error and click on its color, and so on.

When you have your colors correct, click on button and the results will be dis-
played in the window. If you made a mistake, use[thput Cubgbutton again, and fix the few
bad cubie colorsRubik can check for some errors in your input, but not all. If it doggort an
error, you have certainly done something wrong, so youdicht® use thfinput Cub¢command
again.

If you've never done this before, you may have to repeat it @t of times before you
succeed in solving your cube.

B Cube-Solving Macros

Warning: If you enjoy working out puzzles for yourself, don’t readstsiection! It contains a
detailed list of macros that are useful for solving the culie.much more fun if you work out
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your own set and only then take a look at the collection fougrgh

The macros in the list below do interesting things to the culfeere is a short description
of the effects of each one, but to see exactly what each deefubik and apply each one to
a solved cube. For example, the first macro below “cyclestbogners”. Which three corners?
Test the macro irRubik to see. Notice that there are duplications with respect tatine
macro does. This is because in most cases one of the veraltrsjgh longer, is much easier
to memorize. Macros that are commutators, for example, tere easier (at least for me) to
memorize.

You'll see that the list below includes the set of macros #ratbuilt-in toRubik. This first
set is very rigid in that the macros here do very specific matioihanges to the cube. These
are the sorts of macros that you would use when you are veryansalution. The number in
parentheses after each macro is the number of quartersegnged to perform it. All of the
macros below were performed on a cube with yellow on the battarange on the back, and
blue on the right.

L Rl
13 ) A~

o fUBUFUbu (8Q): A commutator that cycles three corners and leavestteof the cubies
intact. If P = UBu, this macro iSPFP~!. Figure C1.

e LdIfdFUfDFLDIu (14q): Rotates two corner cubies in place and does not moyefan
the other cubies. This is also a commutatorPli= LdIfdF, then the macro i®UP~'u.
Figure C2.

e FRBLUIUbrfluLu (14Q): Flips two adjacent edge cubies. It is not quite a cotatou:
Let P = FRB and letQ = UIU. Then this macro iPLQP'1Q~'. It's actually sort of
like a triple commutator since the inverselois |. Figure C3.

¢ RIFFLrdRIFLruRIfLIDRIffLrU: A pure commutator to flip two adjacent edge cubies. If
P = RIFFLrdRIFLr, the macro isPuP~'U. Figure C3.
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e LfUIFbUrFuRfBu (14Q): Flips two opposite edge cubies. This one is just slamd has
little else to recommend it. Figure C4.

o *LU*LU*LUU*RU*RU*RUU (20Q): Flips two opposite edge cubies in place. This is easy
to remember and seems faster than the 20 quarter-turng tteafuires since six of the
moves are slice moves. This is a commutatorPif=*LU*LU*L, then the macro is:
PUUP~LUU. (Remember thdbU is its own inverse.) Figure C4.

e UFFurdIFFLDR (12Q): Cycles three edge cubies, but is not a commutatour&ig5s.

e RIUUrLFF (8Q): Cycles three slice edge cubies. Very fast and can hetitof as being
a commutator when viewed as being composed of two slice méLESF*RFF, since*L
and*R are inverses. Figure C6. (The third cubie in the cycle is tBecubie.)

e fUBUFUbu (8Q): Cycles three corner cubies. It's also a commutatoxeifiet’? = Ubu,
the macro iSPFP . Figure C7.

e TURUrUFRbRBRfRR (15Q): Swaps two corners and two edges, and does some flipping
and rotating of those cubies as well. It leaves the rest oftides unchanged. Figure C8.

The rest of the macros in this section are used to solve the eaily in the solution process.
They are generally quite fast, but they trash varying ammohthe rest of the cube. The ones
you choose to use depend on your overall cube-solving girateor example, if you start by
getting all the cubies on one face correct, you will usuatiytitht either by getting all the corners
followed by all the edges or vice-versa. If you do corners,ftten the moves to place the edges
must preserve the corners; if you place the edges first, yoit dare what the edge-setting
moves do to the corners and so on.

It's easiest to see what each one does by applying them tovedsolibe with rubik.

If you decide to solve the top face by doing the edges first the corners, here are some
macros to do the top face. All of the macros below were peréaton a cube with yellow on the
bottom, orange on the back, and blue on the right.

o W

e DRIr (4Q): Moves an edge cubie from the bottom front face to thefriopt face and flips
it relative to what=F would do. This move is for getting the top face correct. Ivksall
the other cubies on the top where they were, but it does twistod the corner cubies in
place. Notice that if the edge cubie is in the correct pasitio the top face but is flipped,
you can do arfrF followed by this macro to flip it. Figure C9.
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i C13 E C14 i C15 i Cle

o FDfdFDf (7Q): Rotates the UFL corner cubie clockwise in place. Tééwves all the other
cubies on the top face exactly as they were. Figure C10.

e rdRDrdR (7Q): Same as above, but rotates the corner cube countsdewike. Figure
C11.

e FDf, rdR (3Q): Brings a corner cubie from the bottom to the top facedatly above it and
rotates it counter-clockwise or clockwise on the way up. Kweocubies on the top face
are altered. Figure C12 (féiDf).

e rDDRDrdR (8Q): Brings a corner cubie up from the bottom to the top faoectly above

it, and gives it al80° flip on the way up. This macro has no effect on any of the other

cubies in the top face. Figure C13.

o fdFDLDI, FDfdrdR (7Q): Moves an edge cubie from the lower face to the middle fac

without altering the top face at all. Figure C14 (fdFDLDI) and C15 (fof=DfdrdR).

e BULulb (6Q): Cycles three edge cubies on the top face. This mixesaifmp-face corner
cubies but has no effect on the lower two levels. Figure C16.
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C Make Cover Cube

Here is a complete execution of the 17-move sequé&hdbrfBUrLbubLURR that makes
the picture on the cover of this article. Each step is examtly quarter-turn.
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abelian group, 13
alternating group, 37, 48

building commutators, 30
building macros, 30

canonical cycle notation, 8
Cayley graph, 36

center cubie rotation, 46
center of a group, 47

change of coordinate applications, 25
change of coordinates, 24
circle symmetries, 14
commutative groups, 13
commutativity, 3

commutator building blocks, 30
commutators, 26

complex numbers, 13
conjugation, 24

constructing commutators, 30
constructing macros, 30
coordinate change, 24

corner cubie, 1

corner parity (trinity?), 23

cube parity, 22

cube-solving macros, 51
cubie, 1

cycle notation, 8

cycle structure, 9

cycle structure applications, 10
cycling commutators, 29

dihedral group, 14
direct product, 41
Display Permutation, 11
distance, 31

divisors of zero, 14

edge cubie, 1

edge parity, 23

equilateral triangle symmetries, 14
even permutations, 20

face cubie, 1

facelet, 1
finding commutators, 30
finding macros, 30

group definition, 12
group examples, 13
group generators, 14
group identity, 13

group isomorphism, 43
group properties, 17
groups of symmetries, 14

identity, 13

Input Cube, 25, 32
intersection of subgroups, 18
inverse, 13

inverse operations, 2
isomorphic, 16
isomorphisms, 43

LCM (least common multiple), 10

macro, 6

macro length, 31

macros (fast), 30

metrics, 31

modular arithmetic, 14
move notation, 2

multiplying permutations, 15

natural numbers, 13
notation for moves, 2

odd permutations, 20

order of a group, 18

order of a group element, 17
order of a permutation, 10
order of an operation, 4
order of the cube group, 19

patterns, 45

permutation, 1, 7

permutation groups, 15
permutations, even and odd, 20
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quaternions, 45

real numbers, 13
Rubik program, 1
Rubik’s cube group, 15

screwdriver method, 50
single face subgroup, 19
slice subgroup, 19
solution macros, 51
Solve, 31

solving the cube, 32, 50
subgroup, 18

subgroups of the cube group, 18
superflip, 31, 47

Sylow theorems, 35
symmetric group, 16, 48
symmetry operations, 14

trivial group, 13
twisting center cubies, 46

uniqueness of identity and inverses, 17
unjumbling, 50
useful macros, 51

whole-cube group, 47

zero divisors, 14
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